
ADMINISTRATION GUIDE | PUBLIC
SAP Adaptive Server Enterprise 16.0 SP03
Document Version: 1.0 – 2020-03-04

Database Encryption

©
 2

02
0

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 Overview of Encryption. 6
1.1 Full Database Encryption. 7
1.2 Column Encryption. .8

2 Protect Data with Encryption Keys. 9
2.1 Creating the Database Encryption Key. 9

Dropping a Database Encryption Key. 11
Changing a Database Encryption Key. 11

2.2 Creating Column Encryption Keys. .12
Dropping Column Encryption Keys. .15
Changing the Column Encryption Key. 16

2.3 Key Protection. 16
Grant Access to Keys. 17
Separate Keys from Data. .17

3 Key Encryption. 18
3.1 Protect Encryption Keys with the Master Key. 19
3.2 Protect Encryption Keys with the System-Encryption Password. .19
3.3 Protect Keys with User-Specified Passwords. 21
3.4 Protect Encryption Keys with Dual Control. 21

4 Database-Level Master and Dual Master Keys. .22
4.1 Creating the Master and Dual Master Keys. 22

Creating Master Key Copies. 23
4.2 Setting Passwords for the Master and Dual Master Keys. 24
4.3 Altering Passwords and Key Encryption Keys for Master Key Copies. 25
4.4 Regenerate Master Keys. 26
4.5 Dropping Master Keys and Key Copies. 27
4.6 Recovering the Master Key and Dual Master Key. 28
4.7 Starting SAP ASE in Unattended Start-Up mode. 28

Configure Unattended Start-Up Mode. 29
Create the Master Key Start-Up File. .29
How SAP ASE Uses the Master Key Start-Up File. 30

5 Secure External Passwords and Hidden Text. 31
5.1 Service Keys. 31

Creating Service Keys. 32
Dropping Service Keys. 33

2 P U B L I C
Database Encryption

Content

Modify Service Keys. .34
Service Keys with External Passwords. 36

5.2 Service Keys Encrypted with the Master Key. 38

6 Database Encryption. 39
6.1 Create an Encrypted Database. .39
6.2 Encrypt an Existing Database. 40

Step-By-Step Tutorial to Encrypt an Existing Database. 42
6.3 Encryption Status and Progress. 46
6.4 Performance Considerations. 46
6.5 Suspend the Encryption Process. 49

The quiesce database Command and Fully Encrypted Databases. 49
6.6 Resume the Encryption Process. .49
6.7 Temporary Database Encryption with Random Encryption Keys. 50
6.8 Decrypt an Encrypted Database. 51
6.9 Recover Fully Encrypted Databases. 52
6.10 Back Up (Dump) a Fully Encrypted Database. .52
6.11 Back Up the Database Encryption Key. 53
6.12 Restore (Load) Backups of Fully Encrypted Databases. 53
6.13 Loading Behavior of Encrypted Databases. 54
6.14 Dropping a Database That is Being Encrypted. 55
6.15 Unmount an Encrypted Database. .55
6.16 Mount an Encrypted Database. 55

Migrate Database Encryption Keys. 56
Encrypted Database Mounting. 56

6.17 Archive Databases and Full Encryption. 57
6.18 Encrypted Database Audits. 58

7 Column Encryption. .59
7.1 Encrypting Columns on New Tables. 59

Specifying Encryption on select into. 60
7.2 Encrypting Columns in Existing Tables. 61
7.3 Index Creation and Constraints on Encrypted Columns. 62
7.4 Domain Creation and Access Rules on Encrypted Columns. .63
7.5 Decrypt Permission. 63

Revoking Decryption Permission. 64
7.6 Restrict Decrypt Permission. 65
7.7 Default Values Returned Instead of Decrypted Data. 66

Defining Decrypt Defaults. .66
Permissions and Decrypt Default. .67
Columns with Decrypt Default Values. 68
Decrypt Default Columns and Query Qualifications. 69

Database Encryption
Content P U B L I C 3

decrypt default and Implicit Grants. 70
decrypt default and insert, update, and delete Statements. 71
Removing Decrypt Defaults. .72

7.8 Length of Encrypted Columns. 72
7.9 Encrypted Column Audits. 75

Event Names and Numbers. .75
Auditing Actions of the Key Custodian. 76

7.10 Performance Considerations. 76
Indexes on Encrypted Columns. 76
Sort Orders and Encrypted Columns. 77
Joins on Encrypted Columns. .77
Search Arguments and Encrypted Columns. 78
Movement of Encrypted Data as Cipher Text. .79

7.11 Access Encrypted Data. 79
Encrypted Columns Process. 79
Permissions for Decryption. 80
Drop Encryption. 80

8 Role of the Key Custodian. .81
8.1 Users, Roles, and Data Access. 82

9 Key Protection Using User-Specified Passwords. .84
9.1 Change a Key’s Protection Method. 85
9.2 Create Key Copies. .87
9.3 Change Passwords on Key Copies. 88
9.4 Access Encrypted Data with a User Password. 89
9.5 Application Transparency Using Login Passwords on Key Copies. 91
9.6 Login Password Change and Key Copies. 93
9.7 Dropping a Key Copy. .94

10 Key Protection Using External Keystore. 95
10.1 Configuring the Usage of External Encryption Key. 95
10.2 Specifying HSM Credentials. 96
10.3 Creating HSM Keys. 97
10.4 Dropping HSM Keys. 99
10.5 Creating Master Key Encrypted with External Key. 100
10.6 Altering Master Key to Encrypt with External Key. 100
10.7 Backing Up and Restoring the Master Encryption Key. 101
10.8 Recovering a Fully Encrypted Database. 102
10.9 Monitoring Information About HSM Keys. .103

11 Key Recovery from Lost Passwords. 105
11.1 Loss of Password on Key Copy. 105

4 P U B L I C
Database Encryption

Content

11.2 Loss of Login Password. 106
11.3 Loss of Password on Base Key. 106
11.4 Key Recovery Commands. 107
11.5 Ownership Change of Encryption Keys. 108

Database Encryption
Content P U B L I C 5

1 Overview of Encryption

SAP ASE authentication and access control mechanisms ensure that only properly identified and authorized
users can access data. Data encryption further protects sensitive data against theft and security breaches.

Encrypt entire databases, or only columns, depending on your needs.

 Note
You can also encrypt commands on-demand, commands automatically using bcp, or commands and
procedures using Component Integration Services (CIS). For more information, see Security Administration
Guide > Encryption.

While both encrypted columns and fully encrypted databases allow you to comply with security and privacy
requirements, the different usages may make one feature easier to deploy than the other. Consider using:

● Encrypt columns when you can easily identify which columns contain sensitive data.
● Encrypt databases when you must perform range searches over sensitive data columns, and when you lack

the knowledge of the data model and cannot identify sensitive data columns (for example, in packaged
applications that include thousands of tables). In addition, the definition of sensitive data (such as personal
information) differs among different locations (such as states or countries); encrypting an entire database
can allow you to satisfy these various data security requirements.

The SAP ASE encryption feature enables you to encrypt data that is at rest, without changing your
applications. This native support provides the following capabilities:

● Fully encrypt databases
● Column-level granularity
● Use of a symmetric, National Institute of Standards and Technology (NIST)-approved algorithm: Advanced

Encryption Standard (AES)
● Performance optimization
● Enforced separation of duties
● Fully integrated and automatic key management
● Application transparency: no application changes are needed
● Data privacy protection from the power of the system administrator

Data encryption and decryption is automatic and transparent. If you have insert or update permission on a
table, any data you insert or modify is automatically encrypted prior to storage. Daily tasks are not interrupted.

Selecting decrypted data requires decrypt permission in addition to select permission. decrypt
permission can be granted to specific database users, groups, or roles. SAP gives you more control by
providing you with granular access capability to sensitive data. SAP also automatically decrypts selected data
for users with decrypt permission.

Encryption keys are stored in the database in encrypted form. You can encrypt an encryption key using a key
encryption key (KEK) derived from:

● A system-level, user-supplied password
● A KEK derived from a user-supplied password (which can be the user’s login password)

6 P U B L I C
Database Encryption

Overview of Encryption

● A separately created database-level KEK (master key or dual master key)

The password you select reflects your ability to preserve data privacy, even from system administrators. You
may choose to protect your column encryption key using dual-control mode to increase the security.

When data is encrypted, it is stored in an encoded form called “cipher text.” Cipher text increases the length of
the encrypted column from a few bytes to 32 extra bytes. Unencrypted data is stored as plain text.

Column and database encryption uses a symmetric encryption algorithm, which means that the same key is
used for encryption and decryption. SAP ASE tracks the key that encrypts the data.

Generally, using data encryption requires these steps:

1. Install the license option ASE_ENCRYPTION. See the SAP ASE Installation Guide.
2. The system security officer (SSO) enables encryption in SAP ASE:

sp_configure 'enable encrypted columns', 1

3. Depending on the method you chose to protect encryption keys, create a database-level master key or set
the system encryption password.

4. Create one or more named encryption keys. Consider using passwords to protect data even from the
database administrator.

5. Specify the data for encryption.
6. Grant decrypt permission to users who must see the data. You may choose to specify a default plain text

value known as a “decrypt default.” The SAP ASE returns this default, instead of the protected data, to
users who do not have decrypt permission.

Once you perform these steps, you can run your existing applications against your existing databases, tables
and columns, but now the data is securely protected against theft and misuse. SAP ASE utilities and other SAP
products can process data in encrypted form, protecting your data throughout the enterprise. For example, you
can:

● Use SAP Adaptive Server Enterprise cockpit (SAP ASE cockpit) to manage encrypted data using a
graphical interface. See the SAP Adaptive Server Enterprise Cockpit documentation.

● Use the bulk copy utility (bcp) to securely copy encrypted data in and out of the server. See the Utility
Guide.

● Use the SAP ASE migration tool sybmigrate to securely migrate data from one server to another. See the
SAP ASE System Administration Guide.

● Use SAP Replication Server to securely distribute encryption keys and data across servers and platforms.
See the Replication Server Administration Guide for information on encryption when replicating.

For more information, see the Security Administration Guide > Encryption.

1.1 Full Database Encryption

As of version 16.0, you can fully encrypt entire databases, providing protection for an entire database.

When you fully encrypt a database, all of its data, indexes, and transaction logs become encrypted. This
encryption is transparent, so that users can perform operations on tables, indexes, and so on, as usual, without
noticing any differences.

Database Encryption
Overview of Encryption P U B L I C 7

1.2 Column Encryption

Encrypting columns in SAP ASE is more straightforward than using encryption in the middle tier, or in the client
application. Use SQL statements to create encryption keys and to specify columns for encryption; existing
applications continue to run without change.

When you insert or update data in an encrypted column, SAP ASE transparently encrypts the data
immediately before writing the row. When you select from an encrypted column, SAP ASE decrypts the data
after reading it from the row. Integer and floating point data are encrypted in the following form for all
platforms:

● Most significant bit format for integer data
● Institute of Electrical and Electronics Engineers (IEEE) floating point standard with MSB format for floating

point data

You can encrypt data on one platform and decrypt it on a different platform, provided that both platforms use
the same character set.

8 P U B L I C
Database Encryption

Overview of Encryption

2 Protect Data with Encryption Keys

SAP ASE uses two types of encryption keys and keeps keys encrypted when they are not in use.

Types of encryption keys:

● Database encryption key (DEK) – the DEK is created in the master database and used to encrypt a
database.

● Column encryption key (CEK) – users must have access to the CEK before they can access encrypted
data, but it must be encrypted before you store it on disk or in memory. SAP ASE encrypts the CEK using a
key encryption key (KEK) and stores it in encrypted form in sysencryptkeys. The KEK also decrypts the
CEK, allowing you to access decrypted data.

Key management includes creating, dropping, and modifying column encryption keys, distributing passwords,
creating key copies, and providing for key recovery in the event of a lost password.

2.1 Creating the Database Encryption Key

The database encryption key is a 256-bit symmetric key that is created in the master database and used to
encrypt a database.

Prerequisites

Before you can create a database encryption key (DEK):

● Verify that you have a valid SAP ASE encryption feature license (ASE_ENCRYPTION)
● Set the enable encrypted columns configuration parameter
● Create a master key and optionally, a dual master key in the master database; these protect the database

encryption key.
● Ensure that you have the appropriate privileges:

○ If granular permission is enabled, a system permission called manage database encryption key
is required to create the key.

○ If granular permission is disabled, you must have sso_role, keycustodian_role, or create
encryption key permission.

Database Encryption
Protect Data with Encryption Keys P U B L I C 9

Procedure

Use the create encryption key command in the master database to create a database encryption key.
The syntax is:

create encryption key <keyname> [for <algorithm>] for database encryption [with
 {[master key]
 [key_length 256]
 [init_vector random] [[no] dual_control]}

where:
○ <keyname> – must be unique in the user's table, view, and procedure name space in the master database.
○ for <algorithm> – specifies the algorithm. Currently, the only supported algorithm is Advanced

Encryption Standard (AES).
○ for database encryption – explicitly specifies that you are creating an encryption key to encrypt an

entire database, rather than a column.
○ master key – is required for full database encryption. SAP ASE returns an error if the master key does

not already exist.
○ key_length 256 – is the size, in bits, of the key you are creating. The only valid length for a database

encryption key is 256; SAP ASE returns an error message if you use any other size.
○ init_vector random – is required for full database encryption. If you specify init_vector null, as

you can for creating a column encryption key, SAP ASE returns an error.
○ [no] dual control – indicates whether the database encryption key must be encrypted using dual

controls. By default, dual control is not configured.

Example

This example creates a database encryption key that is protected by the master key:

sp_configure 'enable encrypted columns', 1 create encryption key master with passwd "testpassword"
set encryption passwd 'testpassword' for key master create encryption key dbkey for database encryption

10 P U B L I C
Database Encryption

Protect Data with Encryption Keys

2.1.1 Dropping a Database Encryption Key

To drop the database encryption key, use the drop encryption key command. This command deletes the
database encryption key from the sysencryptkeys table in the master database.

Context

The syntax is:

drop encryption key <key_name>

 Note
This command fails if the database encryption key you are dropping is still being used to encrypt a
database.

2.1.2 Changing a Database Encryption Key

To change the manner in which a database encryption key is protected, as well as who its owner is, use the
alter encryption key command.

Context

You cannot regenerate a database encryption key for a database.

● To change a database encryption key:
1. Decrypt the database protected by the database encryption key.
2. Drop, and re-create the database encryption key.

 Note
You cannot convert a column encryption key into a database encryption key. SAP ASE displays an error
message if you alter a different type of encryption key into a database encryption key using the for
database encryption option.

● To simply change the way a database encryption key is protected, rather than change the database
encryption key altogether, use this syntax:

alter encryption key <key_name> for database encryption
modify encryption with {[master key] [[no] dual_control}

Database Encryption
Protect Data with Encryption Keys P U B L I C 11

● To change the owner of a database encryption key:

alter encryption key [[<database>.][<owner>].]<dek_name> modify owner <user_name>

The permission to run this option is the same as the permission for alter encryption key.

2.2 Creating Column Encryption Keys

A column encryption key must exist before a table owner can mark a column for encryption on a new or
existing table.

When you set up keys for the first time, consider:

● Key owner or custodian assignment – the system security officer (SSO) must grant create encryption
key permission to create keys. By default, the sso_role and the keycustodian_role have create
encryption key permission.

● Whether keys should be created in a separate key database – SAP recommends that you use a separate
database for keys, especially if keys are encrypted by the system encryption password.

● The number of keys needed – you can create a separate key for each encrypted column, or you can use the
same key to encrypt columns across multiple tables. From a performance standpoint, encrypted columns
that join with equivalent columns in other tables should share the same key. For security purposes,
unrelated columns should use different keys.

Column encryption in SAP ASE uses the Advanced Encryption Standard (AES) symmetric key encryption
algorithm, with available key sizes of 128, 192, and 256 bits. Random-key generation and cryptographic
functionality is provided by the FIPS 140-2 compliant modules.

To securely protect key values, SAP ASE uses a 256-bit key-encrypting key (KEK), which may be a master key,
or an internal key derived from either the system encryption password or a user-specified password.

SAP ASE encrypts the new key (the column encryption key) and stores the result in sysencryptkeys.

By default, SAP ASE creates 256-bit key-encryption keys. For compatibility with versions earlier than 15.7, it
uses a 128-bit key if the KEK is derived from the system encryption password.

The syntax is:

 create encryption key <[[database.][owner].]keyname> [as default] [<for algorithm>] [with {[key_length <num_bits>] [{passwd '<passwd_phrase>' | passwd <system_encr_passwd> | master key}]
 [init_vector {null | random}]
 [pad {null | random}]
 [[no] dual_control] }]

where:

● <keyname> – must be unique in the user’s table, view, and procedure name space in the current database.
Specify the database name if the key is in another database, and specify the owner’s name if more than

12 P U B L I C
Database Encryption

Protect Data with Encryption Keys

one key of that name exists in the database. The default value for owner is the current user, and the default
value for database is the current database. Only the system security officer can create keys for other users.

 Note
You cannot create temporary key names that start with “#”.

● as default – allows the system security officer or key custodian to create a database default key for
encryption. This enables the table creator to specify encryption without using a keyname on create
table, alter table, and select into. SAP ASE uses the default key from the same database. The
default key may be changed.

● <for algorithm> – Advanced Encryption Standard (AES) is the only algorithm supported. AES supports
key sizes of 128, 192, and 256 bits, and a block size of 16 bytes. The block size is the number of bytes in an
encryption unit. Large data is subdivided for encryption.

● keylength <num_bits> – the size, in bits, of the key to be created. For AES, valid key lengths are 128,
192, and 256 bits. The default keylength is 128 bits.

● passwd <password_phrase> – indicates to ASE to protect the CEK using the user password
<password_phrase>, which can be a quoted alphanumeric string up to 255 bytes in length.

● passwd <system_encr_passwd> – indicates to ASE to protect the CEK using the system encryption
password.

● master key – indicates to ASE to protect the CEK using the master key. By default, SAP ASE uses the
master key (if it exists) to protect column encryption keys.

● init_vector
○ random – specifies use of an initialization vector during encryption. When an initialization vector is

used by the encryption algorithm, the cipher text of two identical pieces of plain text are different,
which prevents detection of data patterns. Using an initialization vector can add to the security of your
data.
Use of an initialization vector implies using a cipher-block chaining (CBC) mode of encryption, where
each block of data is combined with the previous block before encryption, with the first block being
combined with the initialization vector.
However, initialization vectors have some performance implications. You can create indexes and
optimize joins and searches only on columns where the encryption key does not specify an
initialization vector.

○ null – omits the use of an initialization vector when encrypting. This makes the column suitable for
supporting an index.
The default is to use an initialization vector, that is, init_vector random.
Setting init_vector null implies the electronic codebook (ECB) mode, where each block of data is
encrypted independently.
To encrypt one column using an initialization vector and another column without using an initialization
vector, create two separate keys—one that specifies use of an initialization vector and another that
specifies no initialization vector.

● pad
○ null – the default, omits random padding of data.

You cannot use padding if the column must support an index.
○ random – data is automatically padded with random bytes before encryption. You can use padding

instead of an initialization vector to randomize the cipher text. Padding is suitable only for columns
whose plain text length is less than half the block length. For the AES algorithm the block length is 16
bytes.

Database Encryption
Protect Data with Encryption Keys P U B L I C 13

● dual control – indicates whether the new key must be encrypted using dual control. By default, dual
control is not configured.

Examples

These examples use various encryption attributes when creating a column encryption key, and many assume
you have already created the master key or set the system encryption password.

● Example 1 – specifies a 256-bit key called “safe_key” as the database default key. Because the key does
not specify a password, SAP ASE uses the database-level master key as the KEK for safe_key. If there is no
master key, SAP ASE uses the system encryption password:

create encryption key safe_key as default for AES with keylength 256

Only the system security officer or a user with the keycustodian_role can create a default key.
● Example 2 – creates a 128-bit key called “salary_key” for encrypting columns using random padding:

create encryption key salary_key for AES with init_vector null pad random

● Example 3 – creates a 192-bit key named “mykey” for encrypting columns using an initialization vector:

create encryption key mykey for AES with keylength 192 init_vector random

● Example 4 – creates a key protected by a user-specified password:

create encryption key key1 with passwd 'Worlds1Biggest6Secret'

If a key is protected by a user-specified password, that password must be entered a column encrypted by
the key can be accessed.

● Example 5 – creates a key protected by dual-control:

create encryption key dualprotectedkey with passwd "Pass4Tomorrow" dual_control

Key “dualprotectedkey” is protected by the master key and a user password (in dual control). To access the
key, you must enter both the user password for the key and the password for the master key.

Permissions

The sso_role and keycustodian_role implicitly have permission to create encryption keys. The system
security officer or the key custodian uses this syntax to grant create encryption key permissions to
others:

grant create encryption key to <user_name> | <role_name> | <group_name>

14 P U B L I C
Database Encryption

Protect Data with Encryption Keys

For example:

grant create encryption key to key_admin_role

To revoke key creation permission, use:

revoke create encryption key {to | from} <user_name> | <role_name> | <group_name>

 Note
grant all does not grant create encryption key permission to the user. It must be explicitly granted
by the system security officer.

Related Information

Role of the Key Custodian [page 81]
Performance Considerations [page 76]
Database-Level Master and Dual Master Keys [page 22]
Key Protection [page 16]
Dropping Column Encryption Keys [page 15]

2.2.1 Dropping Column Encryption Keys

Column encryption key owners can drop their own keys. The system security officer can drop any key.

Prerequisites

A key can be dropped only if there are no encrypted columns in any database that use the key.

Context

To drop an encryption key, use:

drop encryption key [[<database>.][<owner>].]<keyname>

For example, this drops an encryption key named cc_key:

drop encryption key cust.dbo.cc_key

When executing drop encryption key, SAP ASE does not check for encrypted columns in databases that
are suspect, archived, offline, not recovered, or currently being loaded. In any of these cases, the command

Database Encryption
Protect Data with Encryption Keys P U B L I C 15

issues a warning message that names the unavailable database, but does not fail. When the database is
brought online, any tables with columns that were encrypted with the dropped key are unusable. To restore the
key, the system administrator must load a dump of the dropped key’s database that precedes when the key
was dropped.

The system security officer can use sp_encryption to identify all the columns encrypted with a given key.

Related Information

Creating Column Encryption Keys [page 12]
Role of the Key Custodian [page 81]
Performance Considerations [page 76]
Database-Level Master and Dual Master Keys [page 22]
Key Protection [page 16]

2.2.2 Changing the Column Encryption Key

Periodically change the keys used to encrypt columns and databases.

Create a new key using create encryption key, then use alter table...modify to encrypt the column
with the new key.

In the following example, assume that the “creditcard” column is already encrypted. The alter table
command decrypts and reencrypts the credit card value for every row of customer using cc_key_new.

create encryption key cc_key_new for AES alter table customer modify creditcard encrypt with cc_key_new

2.3 Key Protection

The key administrator must decide where keys are stored, when they should be renewed, and which owners
can use a given key to encrypt data.

Related Information

Creating Column Encryption Keys [page 12]
Dropping Column Encryption Keys [page 15]

16 P U B L I C
Database Encryption

Protect Data with Encryption Keys

2.3.1 Grant Access to Keys

The key owner or a user with the sso_role must grant select permission on a key before another user can
specify the key in the create table, alter table, and select into statements.

The key owner can be the system security officer, the key custodian or, for non-default keys, any user with
create encryption key permission. Key owners should grant select permission on keys as needed.

This example allows users with db_admin_role to use the encryption key named “safe_key” when specifying
encryption on create table, alter table, and select into statements:

grant select on safe_key to db_admin_role

 Note
Users who process encrypted columns through insert, update, delete, and select do not need
select permission on the encryption key.

2.3.2 Separate Keys from Data

When you specify a data for encryption, you can use a named key from the same database or from a different
database. Encrypting with a key from a different database provides a security advantage because, in the event
of the theft of a database dump, it protects against access to both keys and encrypted data.

Administrators can also protect each database dump with a different password, making unauthorized access
even more difficult.

Encrypting with a key from a different database needs special care to avoid data and key integrity problems in
distributed systems. Carefully coordinate database dumps and loads. If you use a named key from a different
database, SAP recommends that, when you dump a database that contains:

● Encrypted columns, you also dump the database where the key was created. You must do this if new keys
have been added since the last dump.

● An encryption key, dump all databases containing columns encrypted with that key. This keeps encrypted
data in sync with the available keys.

If you do not specify a named key, the data is automatically encrypted with the default key from the same
database. The system security officer or the key custodian can use sp_encryption to identify the columns
encrypted with a given key.

Database Encryption
Protect Data with Encryption Keys P U B L I C 17

3 Key Encryption

There are two keys between the user and the data: the database-encryption key (DEK) or column-encryption
key (CEK) and the key-encryption key (KEK). The DEK and CEK encrypts data and users must have access to it
before they can access encrypted data.

It cannot be stored on disk in an unencrypted form. Instead, SAP ASE uses a KEK, or 2 KEKs in dual control, to
encrypt the DEK or CEK when you create or alter an encryption key. The KEK also decrypts the DEK or CEK
before you can access decrypted data. DEKs and CEKs are stored in encrypted form in sysencryptkeys.

The KEK is a master key, created separately by the system security officer or key custodian, is an internally
derived key from the system encryption password, a user-specified password, or a login password, depending
on how you specify the key’s encryption with the create and alter encryption key statements. Both the
system encryption password and the master key are stored in encrypted form.

The following figure describes how to create and store a column encryption key for a create encryption
key statement. The KEK is derived from a password and the KEK and the raw CEK are fed into the encryption
function to produce an encrypted CEK.

The following figure describes how the KEK is used during a DML operation to decrypt the CEK. The raw CEK is
then used to encrypt or decrypt data.

18 P U B L I C
Database Encryption

Key Encryption

3.1 Protect Encryption Keys with the Master Key

The master key is a database-level key that is created by a user with the sso_role or keycustodian_role,
and is used as a KEK for user-created encryption keys. Once created, the master key replaces the system
encryption password as the default KEK for user-created keys.

Although SAP ASE supports using the system encryption password, for compatibility with versions earlier than
15.7, SAP recommends that you use the master key.

You can use the master key with the dual master key to create a composite key that provides dual control and
split knowledge for all user-created keys. You can also create a composite key by using the master key with a
DEK's or CEK’s explicit password.

Using a master key simplifies the administration of encrypted data because:

● Managing passwords for keys is restricted to setting the password for the master key.
● You need not specify passwords on create and alter encryption key statements.
● Allows for password distribution and recovery from lost column encryption key passwords.
● Access control over encrypted data is enforced through decrypt permission on the data.
● You need not make any changes to the application.

The syntax for creating a master key is:

create encryption key master [for AES] with passwd <char_literal>

See the Reference Manual: Commands.

Related Information

Restrict Decrypt Permission [page 65]

3.2 Protect Encryption Keys with the System-Encryption
Password

The system encryption password is a database-specific password, and is the secondary default encryption
method for the DEK or CEK.

SAP ASE uses the system encryption password to encrypt keys created in a specified database without an
explicit password clause. Once the system security officer or key custodian has set a system encryption
password, you need not specify this password to process encrypted columns. SAP ASE internally accesses the
system encryption password when it needs to encrypt or decrypt column encryption keys.

Database Encryption
Key Encryption P U B L I C 19

The system security officer or key custodian uses sp_encryption to set the system encryption password.
The system password is specific to the database using sp_encryption.

sp_encryption system_encr_passwd, <password>

<password> can be as many as 255 bytes in length.

Set a system encryption password only in the database where encryption keys are created.

The system encryption password protects your encryption keys. Choose long and complex system encryption
passwords. Longer passwords are harder to guess or crack by brute force. Include uppercase and lowercase
letters, numbers, and special characters in the system encryption password. SAP recommends that the
system encryption password be at least 16 bytes in length.

SAP ASE enforces compliance of the system encryption password with the minimum password length and
check password for digit configuration parameters.

Change the system password by using sp_encryption and supplying the old password:

sp_encryption system_encr_passwd, <password> [, <old_password>]

Periodically change the system encryption password, especially when an administrator who knows the system
encryption password leaves the company. When the system password is changed, SAP ASE automatically
reencrypts all keys in the database with the new password. Encrypted data is unaffected when the system
password is changed, in other words, it is not decrypted and reencrypted.

You can u-set the system encryption password by supplying “null” as the argument for <password> and
supplying the value for <old_password>. Unset the system password only if you have dropped all the
encryption keys in that database that were encrypted by the system encryption password.

The encrypted password value is stored in the sysattributes system table in that database. Additionally, the
encrypted database feature introduces 43, a new systtributes class that signifies full database encryption.
For every storage allocation of the database that undergoes encryption, SAP ASE inserts a row in
sysattributes with these values:

Column Name Value

class 43

object <dbid> (database ID)

object_info1 Starting logical page ID

object_info2 Ending logical page ID

int_value Last encrypted logical page ID on one storage allocation

This row is removed when SAP ASE finishes encrypting the database.

20 P U B L I C
Database Encryption

Key Encryption

3.3 Protect Keys with User-Specified Passwords

You can limit the power of the system administrator or database owner to access private data when you specify
passwords on keys using create encryption key or alter encryption key.

If keys have explicit passwords, users must have, before they can decrypt data:

● decrypt permission on the data
● The encryption key’s password

Users must also know the password to run DML commands that encrypt data.

Related Information

Key Protection Using User-Specified Passwords [page 84]

3.4 Protect Encryption Keys with Dual Control

You can secure encryption keys with dual control using the create encryption key command.

If you specify create encryption key with dual_control, but do not specify a user password, the
encryption key is protected by the master key and the dual master key.

If you specify with dual_control and include a user-specific password, the encryption key is protected by
the master key and the user password.

● Example 1 – protects CEK “Reallysecret” with both the master and dual master keys and fails, unless both
keys exist in the database:

create encryption key Reallysecret with init_vector random dual_control

● Example 2 – encrypts CEK “k3” with both the master key and user password “Whybother”:

create encryption key k3 with passwd 'Whybother' dual_control

Related Information

Change a Key’s Protection Method [page 85]

Database Encryption
Key Encryption P U B L I C 21

4 Database-Level Master and Dual Master
Keys

SAP ASE allows users to create database-level encryption keys called the master key and the dual master key.
These keys both act as key encryption keys, and are used to protect other keys, such as column and database
encryption keys, and service keys.

The master key and the dual master key must have different owners. You can provide passwords for the master
keys using either isql, or through a server-private file that is accessible only by the SAP ASE. The passwords
to these keys are not stored in the database.

Related Information

Creating Column Encryption Keys [page 12]
Dropping Column Encryption Keys [page 15]

4.1 Creating the Master and Dual Master Keys

Once created, master keys become the default protection method for encryption keys. A dual master key is
required only for dual control of column and database encryption keys.

Prerequisites

Only users with sso_role or keycustodian_role can create the master key and dual master key. There can
only be one master and one dual master key for a database.

Context

To create the master and dual master keys use:

create encryption key [dual] master [for AES] with passwd <char_literal>

where:

● master and dual master refer to database-level keys used to encrypt other keys within the database in
which they are defined. These keys are not used to encrypt data. The master key is named internally as

22 P U B L I C
Database Encryption

Database-Level Master and Dual Master Keys

sybencrmasterkey in sysobjects, and the dual master key is named internally as
sybencrdualmasterkey in sysobjects.

● with passwd must be followed by a character string password that adheres to sp_passwordpolicy.

See the Reference Manual: Commands.

● Example 1 – creates master key in database tdb1:

use database tdb1 create encryption key master with passwd 'unforgetablethatswhatyouare'

● Example 2 – creates a dual master key in database tdb1:

use database tb1 create encryption key dual master with passwd 'dualunforgettable'

● Example 3 – generates an error because you cannot use a master key as a column encryption key:

create table t2 (c1 int encrypt with master)

To change the password of a master key or dual master key, use:

alter encryption key [dual] master with passwd <char_literal>
 modify encryption with passwd <char_literal>

4.1.1 Creating Master Key Copies

Users or master key owners with sso_role or keycustodian_role can create copies for master keys.

Context

You may need to:

● Provide access to the master key or dual master key for unattended start-up of the SAP ASE. Such a key
copy is referred to as the automatic_startup copy.

● Support recovery of the master keys should their passwords be lost. Such a key copy is referred to as the
recovery copy.

● Allow a user other than the base key owner to set up encryption passwords for the master or dual master
key. This key copy is referred to as a regular copy.

To add master key copies in a database, use:

alter encryption key [dual] master with passwd <char_string> add encryption {with passwd <char_string> for user <user_name> [for recovery] | [for automatic_startup] }

Database Encryption
Database-Level Master and Dual Master Keys P U B L I C 23

where:

● <char_string> – (first reference) specifies the password that currently encrypts the base copy of the
master or dual master key.

● <char_string> – (second reference) specifies the password for the regular or recovery copy. It must not
be used for automatic_startup copies.

● for user – indicates the user to whom the regular or recovery copy must be assigned. Do not use this
parameter to enter a password for automatic_startup copies.

● for recovery – indicates that the key copy is to be used to recover the master key in case the password
is lost.

● for automatic_startup – indicates that the key copy is to be used to access the master or dual master
key after the server is restarted with automatic master key access enabled.

● Example 1 – master key owner creates a key copy for Mary:

alter encryption key master with passwd 'unforgettablethatswhatur'
 add encryption
 with passwd 'just4now' for user mary

● Example 2 – dual master key owner Smith creates a key copy for automatic_startup with:

alter encryption key dual master with passwd 'Never4Getable'
 add encryption for automatic_startup

Related Information

Key Recovery from Lost Passwords [page 105]

4.2 Setting Passwords for the Master and Dual Master Keys

The base key owner, or a user who owns a regular key copy, can set the password for the master and dual
master keys. Passwords must be set before master keys can be used.

Context

To set passwords for master keys, you can either use the:

● set encryption passwd command
● Use the unattended start-up feature
● (Master key only) the dataserver command

24 P U B L I C
Database Encryption

Database-Level Master and Dual Master Keys

The set encryption command is:

set encryption passwd <char_literal> for key [dual] master

where:

● <char_literal> – if the user is the key owner, this is the password that currently encrypts the base copy
of the master or dual master key. If the user is not the key owner, this is the password that currently
encrypts the user’s copy of the key.

Example – sets the password “MasterSecret” for the master key in database tdb1:

use tdb1 set encryption passwd 'MasterSecret' for key master

SAP ASE sets the password in the server memory for the database in which the master or dual master key is
defined, and also records the identity of the user setting the password. Once set, the password is available for
all access to the master key in the database.

4.3 Altering Passwords and Key Encryption Keys for Master
Key Copies

Users who own master key copies can change the passwords for their key copies.

Context

To change the password for key copies:

alter encryption key [dual] master with passwd <char_string> modify encryption {with passwd <char_string> [for recovery] | for automatic_startup}

where:

● <char_string> – (first instance) If the user is the key owner, this is the password that currently encrypts
the base copy of the master or dual master key. If the user is not the key owner, this is the password that
currently encrypts the user’s copy of the key.

● <char_string> – (second reference) specifies the new password for the regular or recovery copy. Do not
use this parameter to enter a password for automatic_startup copies.

● for automatic_startup – generate a new KEK and use it to create a new automatic_startup key
copy.

If neither for recovery nor for automatic startup is specified, and the command is issued by the key
owner, SAP ASE alters the base key copy password. If the command is not issued by the key owner, SAP ASE
alters the password of the base key copy only if the current user has sso_role or keycustodian_role.

Database Encryption
Database-Level Master and Dual Master Keys P U B L I C 25

● Example 1 – master key owner “Jones” creates a key copy for “Mary” using:

alter encryption key master with passwd 'unforgettablethatswhatyouare'
 add encryption
 with passwd 'just4now' for user Mary

● Example 2 – “Mary” changes the password for her copy using:

alter encryption key master with passwd 'just4now'
 modify encryption with passwd 'maryspasswd'

● Example 3 – master key owner “John” changes the password for the base key using:

alter encryption key master with passwd 'unforgettablethatswhatyouare'
 modify encryption with passwd 'notunforgettable'

Users with sso_role or keycustodian_role can modify the automatic_startup key copies to change
their key encryption keys. For example, such a user with knowledge of the master key password, can change
the key encryption key of the automatic_startup key copy using:

alter encryption key master with passwd 'unforgettablethatswhatyouare' modify encryption for automatic_startup

The SAP ASE:

● Retrieves the base master key using the password.
● Creates a new master key encryption key and replaces the old key in the master key start-up file with this

new key.
● Creates a new automatic_startup key copy by encrypting the master key using the new master key

encryption key, and replacing the old automatic_startup key copy in sysencryptkeys with this new
copy.

4.4 Regenerate Master Keys
Periodically change the master and dual master keys. However, each time you change the master and dual
master keys, you must also reencrypt all column and database encryption keys using the new master and dual
master keys.

To automate this process, SAP ASE uses the regenerate key option which replaces the master or dual
master key values with the new values, and reencrypts all column and database encryption keys that are
currently encrypted by the master or dual master keys being regenerated:

alter encryption key [dual] master with passwd <char_string> regenerate key [with passwd <char_string>]

When regenerate key command is executed, SAP ASE:

26 P U B L I C
Database Encryption

Database-Level Master and Dual Master Keys

● Validates that the supplied password decrypts the base master or dual master key.
● Creates a new master or dual master key.
● Decrypts all column and database encryption keys that are encrypted either solely or partially by the

master or dual master key. SAP ASE reencrypts them using the new master or dual master key.
● Replaces the base master or dual master key with the new key encrypted by the second password. If the

second password is not supplied, SAP ASE uses the currently configured password to encrypt the new key.
● Drops the regular key copies. The master key owner must re-create regular key copies for designated users

using alter encryption key.
● Drops the key recovery copy. The master key owner must add a new recovery key copy using alter

encryption key, and inform the recovery key owners of the new password.
● Replaces the automatic_startup copy with a new key copy created by encrypting the new master key

with a new randomly generated master key encryption key. SAP ASE writes the new master key encryption
key into the master key start-up file.

4.5 Dropping Master Keys and Key Copies

A user with sso_role or keycustodian_role can drop a master or dual master key provided that there are
no other column or database encryption keys that are currently encrypted using that master or dual master
key.

Context

To drop a master or a dual master key, use:

drop encryption key [dual] master

When a master or dual master key is dropped, SAP ASE:

● Drops the master or dual master key, and its key copies. All regular key copies, the automatic_startup
key copy, and recovery key copies are deleted from the database.

● Deletes the master key encryption keys from the master keystart-upfile, if an automatic_startup key
copy exists.

To delete only the regular key copy, use:

alter encryption key [dual] master drop encryption for user <username>

To delete only the recovery key copy, use:

alter encryption key [dual] master drop encryption for recovery

To delete only the automatic_startup key copy, use:

alter encryption key [dual] master

Database Encryption
Database-Level Master and Dual Master Keys P U B L I C 27

 drop encryption for automatic_startup

4.6 Recovering the Master Key and Dual Master Key

A user with sso_role or keycustodian_role can recover the master or dual master key.

Context

To recover the master or dual master key:

alter encryption key [dual] master with passwd <char_string> recover encryption with passwd <char_string>

where the first reference to passwd is the password to the recovery key copy and the second reference to
passwd is the new password for the base key.

4.7 Starting SAP ASE in Unattended Start-Up mode

Use unattended start-up mode to allow access to the master keys when the password holders are unavailable.

Procedure

1. Enable the automatic master key access configuration parameter.

2. (Optional) set the master key start-up file path and name. Otherwise, SAP ASE uses the default file path
and name.

3. Add automatic_startup copies for the master keys or dual master keys for databases for which you
intend to have unattended start-up.

28 P U B L I C
Database Encryption

Database-Level Master and Dual Master Keys

4.7.1 Configure Unattended Start-Up Mode

In unattended start-up mode, SAP ASE accesses the master key encryption key from the master key start-up
file, and uses the master key encryption key to decrypt the master key.

Users with sso_role can configure SAP ASE to use unattended start-up mode by setting:

sp_configure ‘automatic master key access’, 1

To use unattended start-up mode, you must also create automatic_startup key copies for the master key
and dual master key in the database.

4.7.2 Create the Master Key Start-Up File

When automatic master key access is enabled, SAP ASE reads in the key encryption keys from the
master key start-up file.

If the master key start-up file does not exist, SAP ASE creates a master key start-up file, but does not write the
key encryption key values to the file until automatic_startup key copies either of the master or dual master
keys are created

When automatic master key access is disabled, SAP ASE drops the key encryption keys for master and
dual master keys from the server memory. SAP ASE does not erase the key encryption key values from the
master key start-up file.

A user with the sso_role can specify the master key start-up file path and name using:

sp_encryption mkey_startup_file [, {<new_path> | default_location | null}] [, {sync_with_mem | sync_with_qrm}]

where:

● <new_path> – specifies the location and name of the master key start-up file. <new_path> is not
supported in standalone SAP ASE Cluster Edition installations.

● default_location – sets the master key start-up file to the default path and name: $SYBASE_ASE/
security/ase_encrcols_mk_<servername>.dat. default_location is not supported in
standalone SAP ASE Cluster Edition installations.

● null – displays the current master key start-up file path and name.
● sync_with_mem – writes the master key encryption keys existing in server memory to the master key

start-up file, if configuration option automatic master key access is enabled. sync_with_mem is not
supported in standalone SAP ASE Cluster Edition installations.

● sync_with_qrm – (Available only with standalone Cluster Edition installations) updates the key copy in
the local master key start-up file with the copy on the quorum device.

Database Encryption
Database-Level Master and Dual Master Keys P U B L I C 29

4.7.3 How SAP ASE Uses the Master Key Start-Up File

SAP ASE reads the master and dual master key encryption keys from the master key start-up file into the
server memory.

If:

● The server is started with automatic master key access enabled, or
● automatic master key access is enabled while the server is running.

If:

● An automatic_startup key copy of the master or dual master key is created, SAP ASE writes the master
or dual master key encryption keys to the file.

● The key encryption key of the automatic_startup key copy of the master or dual master key is altered,
SAP ASE writes the new master or dual master key encryption keys to the file.

● An automatic_startup key copy is dropped, SAP ASE deletes the corresponding record in the file.
● A database is dropped, SAP ASE deletes all records belonging to the dropped database.
● A master or dual master key is dropped, SAP ASE deletes the corresponding record.
● A new master key start-up file is specified using sp_encryption mkey_startup_file, SAP ASE

synchronizes the server memory with the contents of the new file.

Once a master key encryption key is in memory, the master key can be accessed through the
automatic_startup copy even if the master key password is not set.

30 P U B L I C
Database Encryption

Database-Level Master and Dual Master Keys

5 Secure External Passwords and Hidden
Text

SAP ASE provides strong encryption for external login passwords and hidden text, using the AES-256
symmetric encryption algorithm.

You may choose strong encryption for external passwords to:

● Replication Agents – replicated databases.
● CIS – remote descriptors and logins.
● Job Scheduler – Job Scheduler Agent.
● RTMS – real-time messaging.
● Secure Sockets Layer (SSL) and Lightweight Directory Access Protocol (LDAP) – SSL and LDAP access

accounts. Passwords are administered using stored procedures sp_ldapadmin and sp_ssladmin can be
secured.

Objects that have SQL text stored in syscomments, such as stored procedures, user-defined functions and
computed columns can be optionally encrypted with strong encryption using sp_hidetext.

 Note
Encrypting external passwords and hidden text requires the ASE_ENCRYPTION license.

5.1 Service Keys

Service keys are 256-bit, persistent encryption keys used to strongly encrypt external login passwords and
hidden text, and are stored in sysencryptkeys.

Encrypt service keys using either:

● A static key – is the default key encryption key for service keys, and can be used if no master key has been
created in the current database. With this method, SAP ASE can use service keys after an unattended
start-up.

● The master key – provides stronger protection than a static key. SAP ASE requires the password to decrypt
the database-specific master key.

The database objects that describe these service keys include:

● syb_extpasswdkey – identifies service key for encryption of external login passwords in
sysattributes. Only one syb_extpasswdkey exists for any database. When the syb_extpasswdkey is
changed, all data encrypted using the key is reencrypted using the new key.
Although external login passwords are generally stored in the master database, RepAgent stores this
information in replicate databases.

● syb_syscommkey_dddddd – identifies service key for encryption of hidden text in syscomments, where
“dddddd” is a global identifier generated by SAP ASE to uniquely identify the key. The global identifier is

Database Encryption
Secure External Passwords and Hidden Text P U B L I C 31

included with the name to distinguish names when there are many syb_syscommkey keys associated with
the same object. The global identifier distinguishes the key, on both the local database and in the replicate
database.
Strong encryption of hidden text requires a service key in each database where sp_hidetext is executed
to hide SQL text. When a new service key is created, any existing service key in the database persists until
explicitly dropped, and any hidden text is not reencrypted until you reissue sp_hidetext.

 Note
The system encryption password does not encrypt service keys.

During an upgrade to version 15.7 or later, procedural objects are recompiled from source. Connected users are
restricted in what they can do until the master key password is entered for databases where strong encryption
of hidden text is enabled, and service key is protected by master key.

An authorized user must set the master key password on such databases using:

use <mydb> go set encryption passwd <password> for key master go

5.1.1 Creating Service Keys

A user with sso_role or keycustodian_role can create a service key and becomes the owner of the key.

Prerequisites

To create service keys:

● An ASE_ENCRYPTION license is required.
● The enable encrypted columns configuration parameter must be set.
● The user creating the service key must have sso_role or keycustodian_role.
● The master key must be created before the service key, if you are protecting service keys with the master

key.

Context

Use:

create encryption key [syb_extpasswdkey | syb_syscommkey] [with { static key | master key }]

By default, the static key encrypts the keys. To use the master key, use the with master key parameter.

32 P U B L I C
Database Encryption

Secure External Passwords and Hidden Text

When a syb_extpasswdkey is created, all external passwords in sysattributes are reencrypted with the
new key using strong encryption.

When a syb_syscommkey is created, any subsequent execution of sp_hidetext uses the new key with strong
encryption. sp_hidetext must be executed on an existing database object for the object to be encrypted with
the new key. Because reencrypting hidden text may involve very large amounts of data, database
administrators should defer executing sp_hidetext to times when there is low system demand.

 Note
You cannot use dual control with service keys.

5.1.2 Dropping Service Keys

drop encryption key ensures that there are no remaining references to the encryption key, and then
deletes it. You cannot drop a nonexistent syb_extpasswdkey or syb_syscommkey_dddddd. To ensure that
you delete all hidden text keys, use sp_encryption to identify all existing keys.

Prerequisites

Users must have a keycustodian_role or sso_role to delete an unused service key.

Context

 Note
If your ASE_ENCRYPTION license has expired, encrypted data is no longer available, and you cannot
execute the drop encryption key command. Contact SAP Technical Support to obtain a temporary
license.

To delete an unused service key for external logins, use:

drop encryption key <syb_extpasswdkey> with password encryption downgrade

When with password encryption downgrade is specified, SAP ASE resets external login passwords with
the algorithm used in versions earlier then 15.7. The Replication Agent password, and the CIS and RTMS
external login passwords are reset to an invalid value. The administrator must manually reenter the passwords,
after the key is dropped, to resume usage of the corresponding services.

To delete an unused single service key for hidden text, use:

drop encryption key <syb_syscommkey_dddddd>

Database Encryption
Secure External Passwords and Hidden Text P U B L I C 33

SAP ASE checks if there are any references to the specified key _dddddd, and drops the key if no references
are found.

Because syb_syscommkey_dddddd indicates a single key, you cannot specify syb_syscommkey_dddddd
with the with text encryption downgrade parameter.

To delete multiple keys:

drop encryption key <syb_syscommkey> with text encryption downgrade

● If you specify with text encryption downgrade, you cannot specify a single service key with
syb_syscommkey_dddddd, only with syb_syscommkey.

● Without the “dddddd” suffix for the syb_syscommkey, SAP ASE reencrypts all the hidden text in
syscomments with the algorithm used in versions earlier than 15.7, and drops all
syb_syscommkey_dddddd keys.

5.1.3 Modify Service Keys

You can regenerate syb_extpasswdkey or change its protection encryption from master key to static key, or
vice versa. You cannot regenerate syb_syscommkey.

5.1.3.1 Changing the syb_extpasswdkey

You can change syb_extpasswdkey from static to dynamic.

Context

Change the syb_extpasswdkey using:

alter encryption key <syb_extpasswdkey > [with { static key | master key}]
 { regenerate key [with { static key | master key }] | modify encryption [with { static key | master key }] }

where:

● The first instance of with {static key | master key} is optional and represents how the
syb_extpasswdkey is currently encrypted.

● The second instance of with {static key | master key} allows the administrator to change the
encryption on the regenerated key from static to dynamic, or vice versa. If you omit this parameter, the
regenerated key remains encrypted as it was before issuing this command.

● The third instance of with {static key | master key} changes the protection on the existing key to
use the static key or the master key as specified. If you omit this parameter, by default, the static key is
used.

34 P U B L I C
Database Encryption

Secure External Passwords and Hidden Text

Procedure

1. Creates a new service key for the external login passwords.
2. Reencrypts the passwords in sysattributes using the new key.

3. Drops the old key.

Results

For example:

● Create a service key for external login passwords and encrypt all external login passwords with the service
key protected by the static key:

create encryption key <syb_extpasswdkey>

● Regenerate the service key for external login passwords, leaving the new service key protected by the static
key and reencrypting all external passwords encrypted by the old service key:

alter encryption key <syb_extpasswdkey> regenerate key

● Change the protection of the service key to be encrypted by the master key. The service key does not
change, and external login passwords are not reencrypted:

alter encryption key <syb_extpasswdkey> modify encryption with master key

 Note
Before issuing this command, ensure that the master key password has already been entered by the
master key owner.

5.1.3.2 Changing the syb_syscommkey

To change the syb_syscommkey, create a new key and use sp_hidetext to reencrypt with the new key.

Context

For example:

● Example 1 – Create a new hidden text encryption key and encrypt all SQL text objects in the syscomments
table with the newly created key:

create encryption key <syb_syscommkey> go

Database Encryption
Secure External Passwords and Hidden Text P U B L I C 35

sp_hidetext go

 Note
When a new syb_syscommkey is created, it becomes the default key used by sp_hidetext in that
database.

● Example 2 – Create a new hidden text encryption key, encrypt the text of a specific stored procedure in
syscomments with the newly created key, and protect the key with the master key:

create encryption key <syb_syscommkey> with master_key
go sp_hidetext <sp_mysproc> go

In this example, all other hidden text rows in syscomments remain encrypted with the previous encryption
key.

5.1.4 Service Keys with External Passwords

Service keys decrypt the private-key password for network listeners using SSL. The private-key password
initializes the SSL certificate.

5.1.4.1 SSL Passwords

How SSL listeners start depends on if the service keys are encrypted by master key and whether the master
key is available.

If the service keys are encrypted by the master key and the master key is unavailable:

● When only SSL listeners are specified in the interfaces file, no user can log in to enter the master key or
dual master key password. The SAP ASE shuts down because it cannot start any listeners.

● When both SSL and non-SSL listeners are specified in the interfaces file, the non-SSL listener can accept
login requests. The SSL listeners are blocked until the master key password is entered manually by an
authorized user after connecting to the SAP ASE on a non-SSL listener port using:

use master go set encryption passwd <password> for key master go

When the master key password is correctly entered, SAP ASE wakes the SSL listener processes and they
begin to accept incoming login requests.

36 P U B L I C
Database Encryption

Secure External Passwords and Hidden Text

5.1.4.2 LDAP Passwords

Service keys are required to decrypt the password for LDAP administration accounts when SAP ASE
authenticates users during the LDAP user authentication process. Until authentication is complete, users
cannot log in using LDAP.

An authorized user that can authenticate locally using SAP ASE authentication can manually enter the master
key password using:

use master go set encryption passwd <password> for key master go

See the Security Administration Guide.

5.1.4.3 Replication Agent Passwords

Service keys decrypt passwords that initiate connections by Replication Agents on user databases. Agents that
are configured to start automatically are blocked until an authorized user enters the master key password
manually, if the service key is encrypted by a master key.

If a service key is in a user database that is replicated, the service key is also available on the replicate database
because the sysencryptkeys table that stores the encryption keys is also replicated. The master key is also
stored in the sysencryptkeys table that is replicated, and also available on the replicate database. Because
they are encrypted, service keys remain protected during the replication process.

After the SAP ASE has been started, an authorized user can connect and set the master key password for each
database using:

use <mydb> go set encryption passwd <password> for key master go

A Replication Agent that is waiting for the master key password can be identified by the status value “passwd
sleep”:

sp_who go

fid spid status loginame origname hostname blk_spid dbname tempdbname cmd
block_xloid --- ---- ----------- ------ -------- -------- ------
------ ---------- --------- -----------
0 38 passwd sleep NULL NULL NULL 0 tdb4 tempdb REP AGENT 0

Database Encryption
Secure External Passwords and Hidden Text P U B L I C 37

5.2 Service Keys Encrypted with the Master Key

If your service keys are encrypted with the master key, the master key’s password must be entered into SAP
ASE, either automatically or manually, depending on how you specify the master key.

If you do not use automatic master key access, you typically enter the master key’s password with set
encryption passwd. However, if a service key is required to decrypt the private key password for network
listeners during start-up, you can supply the master key at the command line, or through a command line
prompt.

Use the dataserver . . . -- master_key_password parameter to prompt for a master key password
during SAP ASE start-up. The user issuing the -- master_key_password parameter must know the master
key password for the master database and have physical access to the console and keyboard to enter the
password.

If you do not include a password, -- master_key_password prompts for password at the command line. For
example:

dataserver --master_key_passwd -dd_master -eerrorlog

master_key_passwd:_

The password characters do not appear, and the password is not validated until later in the SAP ASE start-up
sequence.

If you include the password with the -- master_key_password parameter:

dataserver --master_key_passwd=mysecret -dd_master -eerrorlog

The password, mysecret, is blanked out in memory after it is read and used. However, the clear password is
visible until the memory is blanked out.

If you enter the incorrect password, attempts to use service keys fail, and SAP ASE services that require the
service keys remain unavailable. After the server has started, an authorized user can connect and set the
master key password in the master database with:

use master go
set encryption passwd password for key master go

If you have configured only SSL listeners and you enter the wrong password, SAP ASE shuts down because it
cannot start any listeners.

SAP recommends that you do not use passwords at the command line because the passwords are visible:

● In memory that can be seen with the UNIX ps command
● In memory, on an unattended terminal screen, or on disk in command history buffers and files
● On the screen

SAP encourages customer sites to prompt for passwords to avoid these vulnerabilities when using attended
start-up.

38 P U B L I C
Database Encryption

Secure External Passwords and Hidden Text

6 Database Encryption

Encrypt databases when you must perform range searches over sensitive data columns, and when you lack the
knowledge of the data model and cannot identify sensitive data columns.

6.1 Create an Encrypted Database

To create a fully encrypted database, use the create database command.

Specify whether to encrypt a database when you create it, and data inserted into the database is automatically
encrypted. The size of the database does not change when it is encrypted, and all storage access functions
work identically whether a database is encrypted or not. The types of databases that support encryption are:

● Normal user database
● Temporary database
● Archive database

You cannot encrypt an in-memory database.

To create an encrypted database, use:

create [temporary] database <database_name> encrypt with <key_name>

Where:

● <database_name> is the name of the encrypted database you are creating.
● <key_name> is the name of the database encryption key.

To create an encrypted archive database, use:

create archive database <database_name> encrypt with <key_name>

Where:

● <database_name> is the name of the archive database you are creating
● <key_name> is the same key that you used to encrypt the database that was backed up. SAP ASE verifies

that <key_name> matches during the database load. If it does not match, the restoration fails.

Example

Creates an encrypted database called demodb with data on device demodev and log on device demologdev,
using an encryption key called dbkey:

create database demodb on demodev log on demologdev encrypt with dbkey

Database Encryption
Database Encryption P U B L I C 39

Usage

There is no special permission to use the encrypt with option of the create database command. Users
however, need select permission on the database encryption key to be able to reference it as the
<key_name>.

6.2 Encrypt an Existing Database

You can encrypt an unencrypted database using the alter database command.

Depending on the size of the database, encryption might can take a while. For this reason, the command
returns as soon as the database is marked for encryption. Encryption occurs in the background and the
process is transparent to users. To check on the status and progress of database encryption, run the
sp_helpdb system procedure, the dbencryption_status() built-in function, or the SAP ASE cockpit user
interface. Keep in mind:

● Database encryption occurs while the database is online. This means the database is accessible by other
users while it is being encrypted, and does not require you to put it into single-user mode.

● The encryption process does not interrupt any user queries, updates, or insert operations on the database.
● You can suspend and resume database encryption, so that you can resume encrypting the database after

restarting SAP ASE.
● The encryption operation is executed page by page.
● You cannot alter archive databases for encryption and decryption.
● SAP ASE records the encryption progress of a database and provides utilities to report its status.

Restrictions:

● You cannot encrypt the master, model, dbccdb, and dbccalt databases.
● You cannot decrypt a database that is in the process of being encrypted, or encrypt a database that is

being decrypted.
● You cannot unmount a database while it is in the process of being encrypted.
● You cannot load another database on top of a database that is being encrypted.
● Do not execute commands that shrink database size when the database is being encrypted.

The syntax is:

alter database <database_name> {encrypt with <key_name> [parallel <degree_of_parallelism>] | resume encryption [parallel <degree_of_parallelism>] | suspend encryption }

where:

● encrypt with <key_name> instructs SAP ASE to encrypt the database using <key_name>.
Specifically, the command retrieves the corresponding key ID from the sysencryptkeys system table in
the master database and set the encrkeyid column in its related sysdatabases row.
SAP ASE fails to run alter database and displays an error message if the database is already:
○ Encrypted with another key.

40 P U B L I C
Database Encryption

Database Encryption

○ Being encrypted.
If you run this command on a partially encrypted database that is not currently being encrypted, SAP ASE
treats the command as if you specified the resume encryption option, as long as the key name is the
same as the previously specified key.

● parallel <degree_of_parallelism> determines how many worker threads to initiate for the task.
Create a thread for each database storage virtual device, as long as the number is equal to or fewer than
"number of worker processes" configuration. The <degree_of_parallelism> number should be
no larger than the number of database devices because additional worker threads do not improve
encryption performance. If you do not specify <degree_of_parallelism>, SAP ASE internally defines
the value based on the number of online engines, as well as how the database is distributed across various
devices.

● resume encryption resumes the encryption process from the page where encryption was previously
suspended.
The command fails if:
○ There is an encryption process already running in SAP ASE.
○ Encryption was never started on the database.
○ The encryption process already completed.

You can use parallel <degree_of_parallelism> with resume encrypt.
● suspend encryption terminates all encryption worker threads that are encrypting data. SAP ASE

records the progress of encryption so that resume encryption can restart encryption where the
previous encryption process stopped. SAP ASE ignores this command if there is no encryption in progress.

This example alters an existing database called existdb for encryption using an encryption key called dbkey:

alter database existdb encrypt with dbkey

The example does not specify the parallel degree, leaving it up to SAP ASE to determine how many worker
threads should be initiated to encrypt existdb in parallel.

In addition to the parallel degree, another major factor that affects database encryption performance is the
buffer pool size. A sufficient buffer cache and appropriate size of buffer pool enable SAP ASE to load a large
chunk of pages into memory for every disk read, perform encryption, and write them back.

The following example shows the steps you can take to configure both the buffer cache and buffer pool size for
a database called demodb that will be encrypted:

1. Create a specific data cache for demodb:

sp_cacheconfig demodb_cache, '10M'

This creates a named buffer cache called demodb_cache with 10MB of space for database pages.
2. Create the specific size of buffer pool . The buffer pool size should be 8 times of database page size. For

example, the database page size is 2K by default, therefore the buffer pools size should be 8 x 2 = 16K:

sp_poolconfig demodb_cache, '10M' , '16k'

This creates a 10MB buffer pool of buffers with a size that is 16K in the named cache called
demodb_cache.

3. Bind the database to the buffer cache:

sp_bindcache demodb_cache, demo_db

Database Encryption
Database Encryption P U B L I C 41

6.2.1 Step-By-Step Tutorial to Encrypt an Existing Database

This tutorial describes the steps for encrypting an entire database, providing secure storage of data while at
rest.

Once the initial database encryption completes (that is, the data, indexes, and transaction logs are encrypted):

● All ongoing encryption is performed transparently
● You need not perform any modifications to existing applications to run in the encrypted database.
● You can access data based on existing granted permissions.
● Data encryption and decryption is automatic and transparent to users and applications.

Encryption provides protection using two keys, the key encryption key (KEK, also known as the master key)
and the database encryption key (DEK). The KEK is stored in encrypted form in sysencryptkeys. The server
uses the KEK to protect the DEK, which is created in the master database stored in encrypted form in
sysencryptkeys in the master database. The server uses the KEK to decrypt the DEK, which in turn is used
to decrypt the data stored in the encrypted database.

You can use a KEK or a dual master key to protect the DEK. Because the DEK is stored only in the master
database, it depends on the KEK or the dual master key in the master database to protect it. When used for
database encryption, only the KEK and optional dual master keys in the master database are used to protect
the DEK. The DEK is created with the dual control parameter.

Encrypting and decrypting a database is an I/O-intensive operation. Tuning the data cache for large I/O can
dramatically improve the performance of encryption and decryption while running alter database.

Worker threads spawned from alter database utilize the largest I/O pool size for a cache, which is the
page_size multiplied by 8. This can be done in the default data cache, or in a named cache bound to the
database.

These are areas in the server you can tune for better performance in database encryption or decryption:

● Sufficiently sized large buffer pool, ensuring clean pages are available.
● Increasing the size of the wash area to flush dirty pages
● Increasing the value for housekeeper free write percent to increase the frequency of washing

buffers

Step 1: Configuring SAP ASE for Full Database Encryption

To configure the server for database encryption:

1. Install the SAP ASE encryption feature license ASE_ENCRYPTION. See the installation guide.
2. Enable the enable encrypted columns configuration parameter:

sp_configure 'enable encrypted columns', 1

Step 2: Preparing the KEK and the DEK

There are two methods to implementing the KEK. You can use:

42 P U B L I C
Database Encryption

Database Encryption

● A single KEK to encrypt the DEK.
● A dual master key, providing added security to the master encryption key. Each dual master key must be

owned by a different user, and each user must have the appropriate privileges to create encryption keys.

You must have the keycustodian_role or the sso_role to create the master KEK and DEK, and you must
have the manage database encryption key privilege if you are using granular permissions.

To create the KEK in the master database:

1. Create the encryption key:

create encryption key master with passwd "<your_password>"

2. Configure the password:

set encryption passwd "<your_password>" for key master

To create the dual master key:

1. As the first user, create the encryption key and set the password:

create encryption key master with passwd "user1pass" set encryption passwd "user1pass" for key master

2. As the second user, create the encryption key and set the password:

create encryption key dual master with passwd "user2pass" set encryption passwd "user2pass" for key dual master

 Note
The master and dual master key passwords are not stored in the database. You must set them prior to use.
Use sp_adduser to add each user to the master database in a dual master key configuration. If the users
are not added to the master database, the server identifies these users as guest users, which invalidates
the requirement that both keys are owned by two different users.

Step 3: Create the Database Encryption Key (DEK)

The DEK can be protected by a master key or by dual control.

To create a single DEK, issue:

create encryption key <key_name> for database encryption

To create an encryption key that protects with dual control, issue:

create encryption key <mydbkey> for database encryption with dual_control

Step 4: Encrypting the Database

There are a few ways to encrypt a database:

Database Encryption
Database Encryption P U B L I C 43

● Encrypt an existing database with alter database – requires that the server reads existing data and
encrypts the contents, which can take a considerable amount of time (depending on database size).
However, the encryption process occurs in the background. sp_helpdb report the progress completion as
a percentage while the database encryption is in progress, and once complete, it describes this database
as encrypted. You must be the database owner or a user with SA privileges to run alter database …
encrypt.
For example, this encrypts the pubs2 database with a DEK named important_key:

alter database pubs2 encrypt with important_key

There are a number of encryption parameters for alter database:
○ parallel <degree_of_parallelism> – specifies the number of worker tasks to improve

performance of the encryption process.
The degree of parallelism depends on the number of virtual devices the database resides on and the
number of engines. If unspecified, the server automatically determines the value for
<degree_of_parallelism>. The value for the number of worker processes configuration
parameter must be greater than, or equal to, the number of parallel threads specified. However, the
specified number of parallel threads is not guaranteed to be the number of threads used for the
encryption process.

○ suspend encryption – indicates the encryption process can be suspended and resumed later.
○ resume encryption – resumes the suspended or interrupted encryption process.

● Include encryption when you create the database – specify the DEK when you issue the create
database command. For example:

create database mydb on dev1=100 log on log1=20 encrypt with important_key

All data stored in this database is encrypted during run-time and remains encrypted when at rest. This
database is described as encrypted by sp_helpdb.

Use the dbencryption_status function to check the status of the encryption process. The syntax is:

dbencryption_status ('status'|'progress', <dbid>[,<lstart>])

status returns these values:

● 0 – database is not encrypted
● 1 – database is encrypted
● 2 – database is being encrypted
● 3 – database is partially encrypted, but not in the process of being encrypted
● 4 – database is being decrypted
● 5 – database is partially decrypted, but not in the process of being decrypted

The progress parameter reports the encryption or decryption progress as a percentage. If you include only
the <dbid> parameter, the percentage reported is for the entire database. If you include <dbid> and
<lstart>, the percentage reported is for pages in the device fragment indicated by the <lstart> value.

dbencryption_status … progress returns -1 if there is no active encryption or decryption taking place (an
expected return value if encryption or decryption has completed).

44 P U B L I C
Database Encryption

Database Encryption

Step 5: Setting the KEK Password for Unattended Startup

Encrypted databases are not online when you restart SAP ASE until the KEK's passwords are set in memory.
Use these commands to bring an encrypted database online and set the password for the KEK or the dual
master key:

set encryption passwd ‘the_password’ for key master set encryption passwd ‘the_password’ for key dual master

Bring the encrypted databases online with the online database command once the passwords are set in
memory.

Use an unattended startup to automatically set the KEK password f these users are unavailable to set the
passwords:

1. Enable unattended startup mode:

sp_configure "automatic master key access",1

Enabling this configuration parameter stores the KEK encryption keys in the KEK startup file. If this file
does not exist, a file is created. However, the encryption key information is not written to the file until
automatic_startup key copies of the master or dual master keys are created.
Use sp_encryption to over-ride the name and location of this file.

2. Make copies of the KEK (and dual master key, if used) using alter encryption key. The encrypted databases
come online unattended because SAP ASE loads the KEKs from the KEK startup file:
○ Using a single KEK:

alter encryption key master with passwd "your_password" add encryption for
automatic_startup

○ Using a dual master key:

alter encryption key master with passwd "user1pass" add encryption for
automatic_startup alter encryption key dual master with passwd "user2pass" add encryption
for automatic_startup

Decrypting a Database

The process for decrypting a database uses alter database, and is similar to steps you perform to encrypt
an existing database.

Altering a database to remove encryption requires reading existing data and decrypting the contents.
Depending on the database size, this can take a considerable amount of time. The decryption process occurs in
the background. Once the alter database command completes, sp_helpdb no longer describes the
database as encrypted. While database decryption is in progress, sp_helpdb reports the progress
completed as a percentage.

The syntax to decrypt a database is:

alter database <database_name> decrypt

Database Encryption
Database Encryption P U B L I C 45

There are a number of ways to decrypt a database with alter database:

● parallel <degree_of_parallelism> – specifies the number of worker tasks to improve performance
of the decryption process. The degree of parallelism depends on the number of virtual devices the
database resides on and the number of engines. If unspecified, the server automatically determines the
value for <degree_of_parallelism>. The value for the number of worker processes configuration
parameter must be greater than, or equal to, the number of parallel threads specified. However, the
specified number of parallel threads is not guaranteed to be the number of threads used for the encryption
process.

● suspend decryption – suspends the decryption process, allowing it to be resumed later.
● resume decryption – resumes the decryption process

6.3 Encryption Status and Progress

To obtain information on whether a database is encrypted or not, as well as how far along the encryption
process has gone on a database being encrypted, use the sp_helpdb system procedure or the
dbencryption_status built-in function.

● sp_helpdb – the syntax is the following, where <database_name> is the name of the database:

sp_helpdb <database_name>

● dbencryption_status – use status to get information on whether a database is encrypted, and
progress to find out how far along the encryption process has gone:

○ select dbencryption_status(“status”, db_id(“existdb”))

○ select dbencryption_status(“progress”, db_id(“existdb”))

6.4 Performance Considerations

When an existing database is being encrypted, it is still kept online. Take performance issues into consideration
to mitigate the impact on user access to the database, as well as general SAP ASE response time.

Factors to take into account for good database encryption performance include:

● The number of SAP ASE engines on a multiprocessor machine
● The number of disks the database is stored across
● The buffer pool size associated with the database

Specifying the parallel degree value in alter database for encryption or, decryption, essentially tells SAP
ASE how many worker threads to initiate when executing the operation. Since worker threads run concurrently,
it is better when they are distributed across multiple CPUs. At the same time, it is better to avoid overwhelming
CPU resources, since this could reduce the general response time from SAP ASE. For this reason, take the
number of SAP ASE engines into consideration when deciding on the parallel degree value.

Device I/O is a major bottleneck during database encryption. SAP ASE can tackle this from two angles:

46 P U B L I C
Database Encryption

Database Encryption

● If every separate device is assigned a worker thread, device I/O can be carried out independently and
concurrently for best throughput. Therefore parallel degree should consider the number of disks the
database is stored across.

● Performance will benefit if a big chunk of pages can be processed for every device read/write. The
database must be online while the encryption/decryption is in progress. For this reason, instead of
allocating a proprietary buffer, existing buffer manager mechanism has to be leveraged to solve
synchronization problem. In this respect, you can create sufficient buffer cache and large I/O size of buffer
pool to help SAP ASE improve its encryption performance.

This example shows how to configure both the buffer cache and pool size to fully encrypt a database called
demodb, which has its data and log distributed across 11 devices:

> select dbid, segmap, lstart, size, vstart, vdevno from sysusages where
dbid=db_id('demodb') dbid segmap lstart size vstart vdevno
------ ------ ---------- ---------- ----------- -----------
 4 3 0 92160 0 1
 4 4 92160 30720 0 2
 4 3 122880 184320 92160 1
 4 4 307200 61440 30720 2
 4 3 368640 419840 276480 1
 4 4 788480 61440 92160 2
 4 3 849920 122880 696320 1
 4 4 972800 153600 153600 2
 4 3 1126400 819200 819200 1
 4 3 1945600 1638400 0 3
 4 3 3584000 1638400 0 4
 4 3 5222400 1638400 0 5
 4 3 6860800 1638400 0 6
 4 3 8499200 1638400 0 7
 4 3 10137600 1638400 0 8
 4 3 11776000 1638400 0 9
 4 3 13414400 1638400 0 10
 4 3 15052800 1638400 0 11 4 4 16691200 204800 307200 2

1. Configure buffer cache and buffer pool size:
1. Create a specific data cache for demodb:

sp_cacheconfig demodb_cache, '100M'

This creates a buffer cache named demodb_cache that has 100MB of space for database pages.
2. Create the specific size of buffer pool, where the buffer pool size is 8 times the size of the database

page size:

sp_poolconfig demodb_cache, '100M' , '16k'

Since the default database page size is 2K, the buffer pool size should be 8 X 2 = 16KB.
This creates a 100MB buffer pool with 16K buffers in the named cache demodb_cache.

3. Bind the database to the buffer cache:

sp_bindcache demodb_cache, demo_db

This binds the database demo_db to the created buffer cache demodb_cache.
2. Determine what parallel degree to use. In this example, there are 8 SAP ASE engines configured:

[Thread Pool:syb_default_pool]

Database Encryption
Database Encryption P U B L I C 47

Number of threads = 8
The maximum number of worker thread should not exceed 8.
In the meantime, with SAP ASE using 11 database devices, it needs, at most, 11 worker threads to perform
device I/O in parallel. Since 11 worker threads would strain the eight engines, the parallel degree should be
set to 8. However to allow SAP ASE to maintain its response time and perform other operations, avoid
occupying all of its CPU resources by selecting a parallel degree of 6.
1. Make sure sufficient worker threads are configured:

sp_configure 'number of worker processes', 6

2. Alter database demodb for encryption:

alter database demodb encrypt with dbkey parallel degree 6

sp_who shows 6 worker threads:

>sp_who fid spid status loginame origname
 hostname blk_spid dbname
 tempdbname cmd
 block_xloid threadpool
------ -------- ---------------- ---------
……
 0 16 sleeping NULL NULL NULL 0 master
 master DB ENCRYPTION CONTROLLER 0 NULL
 16 1 sleeping NULL NULL NULL 0 master
 master WORKER PROCESS 0 NULL
 16 17 sleeping NULL NULL NULL 0 master
 master WORKER PROCESS 0 NULL ……

sp_helpdb can report the encryption progress and status:

1> sp_helpdb demodb 2> go
name db_size owner dbid created durability lobcomplvl
inrowlen status
-------- ---------- ------ ----- ------------- ---------- ----------
-------- ----------------
demodb 33000.0 MB sa 4 Sept 27, 2013 full 0
NULL encryption in progress: 18%

You can also use the dbencryption_status function to get encryption status and progress:

1> select dbencryption_status("status", db_id('demodb')) 2> go

2
1> select dbencryption_status("progress", db_id('demodb'))
2> go
----------- 21

This shows that 21 percent of database pages has been encrypted.
You can also use dbencryption_status to find the progress on a specific fragment:

1> select dbencryption_status("progress", db_id('demodb'), 92160) 2> go
----------- 83

48 P U B L I C
Database Encryption

Database Encryption

This shows that 83 percent of pages in the fragment with a logical page start of 92160 has been
encrypted.

Encrypted databases consume more buffers for encryption and decryption than nonencrypted databases. If
clean buffers are unavailable because of encryption and decryption:

● Increase the buffer pool size and the buffer pool wash
● Configure housekeeper free write percent to a value that allows the housekeeper task to wash

buffers more frequently

6.5 Suspend the Encryption Process

To stop encrypting a database in the process of being encrypted, use the suspend encrypt option of the
alter database command.

alter database <database_name> suspend encryption

6.5.1 The quiesce database Command and Fully Encrypted
Databases

When you run the quiesce database command on a database that is being encrypted, SAP ASE puts the
encryption process on hold.

You need not run the suspend encryption option of alter database after you run quiesce database;
quiesce database automatically suspends the I/O operation on the database.

After the quiesce mode is released, the task of encrypting (or decrypting) resumes automatically; you need not
run the resume encryption option in the alter database.

6.6 Resume the Encryption Process

To resume encrypting a database that had its encryption process interrupted or suspended, use the resume
encryption option of the alter database command.

alter database <database_name> resume encryption [parallel <degree_of_parallelism>]

Database Encryption
Database Encryption P U B L I C 49

6.7 Temporary Database Encryption with Random
Encryption Keys

Temporary database can be created or encrypted with a random database encryption key. The random key is
created by the server and stored in memory.

For temporary databases encrypted with a random key, encrkeyid = -1 is used to indicate in the system
catalog SYSDATABASES.

When the server is started, the encrypted temporary database is re-created with a different random database
encryption key. Encrypted temporary databases with random database encryption keys cannot be dumped.

You can instruct the server to re-create an encrypted temporary database as a cleartext database during
server boot using the command line option -C or --cleartext-temp-db. On the Windows platform, you
must use --cleartext-temp-db.

The syntax is:

create temporary database <dbname> encrypt [with random key] alter database <temp dbname> encrypt [with random key]
 alter database <temp dbname> decrypt [with random key]

Example

Temporary database t1 is created and encrypted with a database encryption key named dek_master.

1> create temporary database t1 encrypt with dek_master 2> go

Example

Temporary database t2 is created and encrypted with a random database encryption key generated by the
server.

1> create temporary database t2 encrypt with random key 2> go
or

1> create temporary database t2 encrypt 2> go

50 P U B L I C
Database Encryption

Database Encryption

Example

Temporary database t7 is altered to be encrypted with a random database encryption key generated by the
server.

1> alter database t7 encrypt with random key 2> go
or

1> alter database t7 encrypt 2> go

Example

Temporary database t7 is altered to be decrypted.

1> alter database t7 decrypt with random key 2> go
or

1> alter database t7 decrypt 2> go

6.8 Decrypt an Encrypted Database

To decrypt a fully encrypted database, use the alter database command.

The syntax is:

alter database <database_name> {decrypt [with <key_name>] [parallel <degree_of_parallelism>] | resume decryption [parallel <degree_of_parallelism>] | suspend decryption}

where:

● <database_name> – is the name of the fully encrypted database you want to decrypt.
● <key_name> – (optional) is the same database encryption key you used to encrypt the database. If you

specify a different key name, the command fails and SAP ASE displays an error message.
● resume decryption – resumes the decryption process for the database in which an earlier decryption

process has been suspended. SAP ASE ignores this command if the <database_name> is already
completely decrypted.

● parallel <degree_of_parallelism> – specifies how many worker threads to initiate for the task.
● suspend decryption – terminates the decryption process. SAP ASE records where the process was

stopped, so that resume decrypt can restart the decryption process at the correct place in the database.

Database Encryption
Database Encryption P U B L I C 51

You must have select permission on the database's <key_name> to use this command.

6.9 Recover Fully Encrypted Databases

If SAP ASE cannot retrieve the database encryption key during start-up because the master or dual master key
is unavailable, SAP ASE ignores the encrypted database.

SAP ASE needs access to the database encryption key to know what to do with fully encrypted databases. The
database encryption key itself is also encrypted, and is decrypted by the master key.

To connect to the server after you restart SAP ASE, the password holder for the master or dual master key can
set the encryption password:

set encryption <passwd> for key [dual] master

This allows the master key to decrypt the database encryption key, at which point the database encryption key
can bring the fully encrypted database online:

online database <encrypted_database_name>

Database recovery then occurs as the server comes back online.

You can also set up an automatic recovery; see Starting Adaptive Server in Unattended Start-Up Mode in the
Encrypted Columns Users Guide.

6.10 Back Up (Dump) a Fully Encrypted Database

Backing up a fully encrypted database is the same as for normal, unencrypted databases, since the encryption
process is performed transparently.

To load a back-up dump of an encrypted database, it must use the same encryption key that was used to
encrypt the dump.

The database encryption key is stored in the master database, outside of the database you are backing up. For
this reason, the backup process is not automatically applied to the database encryption key when you execute
the dump database command; you must independently back up the database encryption key and the master
key separately from the database backup.

To back up the key values, either:

● Use the ddlgen utility to generate a DDL statement, or;
● Back them up directly.

52 P U B L I C
Database Encryption

Database Encryption

6.11 Back Up the Database Encryption Key

To resume recoverability, you must back up the database encryption key, the master or dual master key, and
the encrypted database.

This example uses the ddlgen utility to generate SQL statements on database encryption keys:

ddlgen -Usa -P -S<server> -TEK -Nmaster.<owner>.<dek_name> -XOD

The syntax is similar when generating SQL statements for the [dual] master key.

6.12 Restore (Load) Backups of Fully Encrypted Databases

Restore a fully encrypted database as you would a normal, unencrypted database.

Before you can load an encrypted database dump:

1. Restore the master key and database encryption key.
2. Create the target database for encryption using the same database encryption key you used for the

database you are loading.

Use this command to restore your encrypted database, where <database_name> is the name of the
encrypted database you are restoring:

load database <database_name>

 Note
You cannot use the verification option (load database <database_name> with verify only =
full) with encrypted databases. When you specify this option, Backup Server reads all rows and checks
that the row formats are valid. Since Backup Server cannot understand encrypted text, the command fails
and Backup Server displays an error message.

When you perform load database to restore an encrypted database, SAP ASE verifies that the target
database:

● Is an encrypted database. If it is not, SAP ASE displays an error message and the load database
command fails.

● Has the correct database encryption key. If the database encryption key does not match, SAP ASE displays
an error message.

Database Encryption
Database Encryption P U B L I C 53

6.13 Loading Behavior of Encrypted Databases

Loading behavior differs, depending on the encryption status of both the target database and the database or
transaction log being restored.

Cross-platform loading of an encrypted database dump is not supported in version SAP ASE 16.0 and later.

Loading Behavior
Unencrypted Target
Database

Encrypted Target Da
tabase

Partially Encrypted
Target Database

Partially Decrypted
Target Database

Unencrypted Database
Dump

Allowed. Allowed only if using
the with
override clause.
Dump security status
is reflected in target
database.

Allowed only if using
the with override
clause. Dump status is
reflected in target da
tabase.

Allowed only if using
the with override
clause. Dump security
status is reflected.

Unencrypted Transac
tion Dump

Allowed. Allowed. Marks the
target database as
partially encrypted.

Allowed. The target da
tabase retains its sta
tus as partially en
crypted.

Allowed. The target da
tabase retains its sta
tus as partially en
crypted.

Encrypted Database
Dump

Not allowed. Allowed. Allowed. Dump secur
ity status is reflected in
the target database.

Allowed only if using
the with override
clause. Dump security
status is reflected in
the target database.

Encrypted Transaction
Dump

Not allowed. Allowed. Allowed. The target da
tabase retains its sta
tus as partially en
crypted.

Not allowed.

Partially Encrypted Da
tabase Dump

Not allowed. Allowed. Dump secur
ity status is reflected
in the target data
base.

Allowed. The target da
tabase retains its sta
tus as partially en
crypted.

Allowed only if using
the with override
clause. Dump status is
reflected in the target
database.

Partially Encrypted
Transaction Dump

Not allowed. Allowed. Dump secur
ity status is reflected
in the target data
base.

Allowed. The target da
tabase retains its sta
tus as partially en
crypted.

Not allowed.

Partially Decrypted Da
tabase Dump

Not allowed. Allowed only if using
the with
override clause.
Dump status is re
flected in the target
database.

Allowed only if using
the with override
clause. Dump security
status is reflected in
the target database.

Allowed. The target da
tabase retains its sta
tus as partially de
crypted.

Partially Decrypted
Transaction Dump

Not allowed. Not allowed. Not allowed. Allowed. The target da
tabase retains its sta
tus as partially de
crypted.

54 P U B L I C
Database Encryption

Database Encryption

6.14 Dropping a Database That is Being Encrypted

When you execute the drop database command on a database that is being encrypted or decrypted, drop
database terminates the encryption/decryption process, searches the sysattributes system table, cleans
up all the progress information, and then drops the database.

6.15 Unmount an Encrypted Database

You can unmount an encrypted database, in exactly the same way you unmount a cleartext database.

There is no statement syntax or permission change. The data in an unmounted encrypted database stays
encrypted. Additional information is included in the manifest file to indicate the security status of encrypted
databases.

You are not allowed to unmount a database which is being encrypted or decrypted. An error message is thrown
when this situation happens. You must suspend the database encryption (or decryption) process to unmount a
partially encrypted or decrypted database. The encryption status will be recorded in the manifest file and
applied to the database when it is mounted to the destination server.

Database encryption keys will not be included in either the manifest file or unmounted encrypted database.
Keys must be transported to the target server separately before the database can be mounted.

For example, unmount encrypted database edb1 and edb2, and normal database db3 and db4:

%isql –Udbkey_owner -Ppassword -Ssrvname set encryption passwd ‘masterkey_password’ for key master
go
%isql –Uuser1 –Ppassword –Ssrvname
unmount database edb1, edb2 , db3, db4 to “/filespace/test_manifest”
go

Related Information

Mount an Encrypted Database [page 55]

6.16 Mount an Encrypted Database

In order to mount an encrypted database to a server, the server should have the exact same master key and
database encryption keys stored in the master database.

During the mounting process, the SAP ASE server will verify that there is a matching database encryption key
for each encrypted database that you intend to mount. To mount an encrypted database, you must:

Database Encryption
Database Encryption P U B L I C 55

● migrate the database encryption keys, and then
● mount the encrypted database.

Related Information

Unmount an Encrypted Database [page 55]

6.16.1 Migrate Database Encryption Keys

Use the ddlgen command to migrate keys.

All database encryption keys are stored in the master database. Because the database encryption key is
protected by the master key, the master key should be migrated too. The migration requirement applies to the
dual master key if it is also used to protect the database encryption key.

For example, if user dbkey_owner creates all of the master key and database encryption keys in the source
server, invoke ddlgen to generate the key migration script:

%ddlgen –Udbkey_owner -Ppassword -Ssrvname -TEK -Dmaster –Nmaster.dbkey_owner.% -XOD >
key_migration.sql

Execute the generated script key_migration.sql in the target server to create the same keys in the server.

6.16.2 Encrypted Database Mounting

There are no syntax and permission changes for the mount statement. When with listonly is used, the
output message indicates the encrypted database status.

For example, in the target server:

mount database all from “/filespace /test_manifest” with listonly go
[database]
edb1 encrypted by master.dbkey_owner.encrkey_edb1
edb2 encrypted by master.dbkey_owner.encrkey_edb2
db3
db4
[device]
'/filespace /d6.dbs' = 'datadev_edb1'
' /filespace/d7.dbs' = 'logdev_edb1'
'/filespace /d8.dbs' = 'datadev_edb2'
'/filespace /d9.dbs' = 'logdev_edb2'
'/filespace /d10.dbs' = 'datadev_db3'
'/filespace /d11.dbs' = 'logdev_db3'
'/filespace /d12.dbs' = 'datadev_db4'
'/filespace /d13.dbs' = 'logdev_db4'

In order to mount the databases, set the encryption password for the master key first:

%isql –Udbkey_owner -Ppassword -Ssrvname

56 P U B L I C
Database Encryption

Database Encryption

 set encryption passwd ‘masterkey_password’ for key master
go

Then mount the databases:

%isql –Uuser1 –Ppassword –Ssrvname mount database all from “/filespace /test_manifest”
go

For partially encrypted or decrypted databases, the encryption status of the database is maintained during
unmount and mount operations. Resume encryption or decryption on the mounted database by using the
alter database command.

6.17 Archive Databases and Full Encryption

Archive databases are read-only. The encryption syntax indicates that an archive database can load an
encrypted database dump.

As with database backups and loads, restore the master key and database encryption key, and associate the
DEK with the archive database.

To dump or load a fully encrypted archive database, perform the same steps as with normal databases.

To create an archive database, use:

create archive database <database_name> encrypt with <key_name>

where:

● <database_name> is the name of the archive database you are creating
● <key_name> is the same key that you used to encrypt the database that was backed up (dumped). SAP

ASE verifies that <key_name> matches during the database dump. If it does not match, the restoration
fails.

Unlike normal databases, an archive database provides a modified page section that stores page modification
or allocation information due to redos/undos and transaction loading operations. When you encrypt an archive
database, encrypt the data in the modified page section as well, using the database encryption key from the
archive database.

There is no special permission to use the encrypt with option of the create archive database
command. Users however, need select permission on the database encryption key to reference it as the
<key_name>.

Database Encryption
Database Encryption P U B L I C 57

6.18 Encrypted Database Audits

You can perform and manage encrypted database audits with sp_audit.

Enable encryption_key auditing option to audit database encryption key management. You can enable other
auditing options, such asalter to audit database encryption.

See Auditing in the Security Administration Guide.

58 P U B L I C
Database Encryption

Database Encryption

7 Column Encryption

Certain datatypes can be encrypted.

You can encrypt:

● int, smallint, tinyint
● unsigned int, unsigned smallint, unsigned tinyint
● bigint, unsigned bigint
● decimal and numeric
● float4 and float8
● money, smallmoney
● date, time, smalldatetime, datetime
● char and varchar
● unichar, univarchar
● binary and varbinary
● bit

7.1 Encrypting Columns on New Tables

To encrypt columns in a new table, use the encrypt column qualifier on the create table statement.

Context

The following partial syntax for create table includes only clauses that are specific to encryption. See the
Reference Manual: Commands for the complete syntax.

create table <table_name> (<column_name> . . .
[constraint_specification] [encrypt [with [<database>.[<owner>].]<keyname>]] [, next_column_specification . . .])

● <keyname> – identifies a key created using create encryption key. The creator of the table must
have select permission on <keyname>. If <keyname> is not supplied, SAP ASE looks for a default key
created using the as default clause on the create encryption key.

Database Encryption
Column Encryption P U B L I C 59

 Note
You cannot encrypt a computed column, and an encrypted column cannot appear in an expression that
defines a computed column. You cannot specify an encrypted column in the <partition_clause> of a
table.

The following example creates two keys: a database default key, and another key (cc_key) which you must
name in the create table command. Both keys use default values for length and an initialization vector. The
ssn column in the employee table is encrypted using the default key, and the creditcard column in the
customer table is encrypted with cc_key:

create encryption key new_key as default for AES create encryption key cc_key
create table employee_table (ssn char(15) encrypt,
 ename char(50), ...))
create table customer (creditcard char(20) encrypt with cc_key, cc_name char(50), ...)

This example creates key k1, which uses nondefault values for the initialization vector and random pad. The
employee esalary column is padded with random data before encryption:

create encryption key k1 init_vector null pad random create table employee (eid int, esalary money encrypt with k1, ...)

7.1.1 Specifying Encryption on select into

By default, select into creates a target table without encryption, even if the source table has one or more
encrypted columns.

Context

To encrypt any column in the target table, you must qualify the target column with the encrypt clause, as
shown:

select [all|distinct] <column_list> into <table_name> [(colname encrypt [with [[<database>.][<owner>].]<keyname>] [, colname encrypt [with[[<database>.][<owner>].]<keyname>]])] from <table_name> | <view_name>

You can encrypt a specific column in the target table even if the data was not encrypted in the source table. If
the column in the source table is encrypted with the same key specified for the target column, SAP ASE
optimizes processing by bypassing the decryption step on the source table and the encryption step on the
target table.

The rules for specifying encryption on a target table are the same as those for encryption specified on create
table in regard to:

60 P U B L I C
Database Encryption
Column Encryption

● Allowable datatypes on the columns to be encrypted
● The use of the database default key when the <keyname> is omitted
● The requirement for select permission on the key used to encrypt the target columns.

The following example selects the encrypted column creditcard from the daily_xacts table and stores it
in encrypted form in the #bigspenders temporary table:

select creditcard, custid, sum(amount) into #bigspenders (creditcard encrypt with cust.dbo.new_cc_key)
 from daily_xacts group by creditcard having sum(amount) > $5000

 Note
select into requires column-level permissions, including decrypt, on the source table.

7.2 Encrypting Columns in Existing Tables

To encrypt columns in existing tables, use the modify column option on the alter table statement with
the encrypt clause.

Context

The syntax is:

 alter table <table_name> modify <column_name> [encrypt [with [[<database>.][<owner>].]<keyname>]]

where <keyname> identifies a key created using create encryption key. The creator of the table must
have select permission on <keyname>. If <keyname> is not supplied, SAP ASE looks for a default key created
using the as default clause on the create encryption key.

See the Reference Manual: Commands.

There are restrictions for modifying encrypted columns:

● You cannot modify a column for encryption or decryption on which you have created a trigger. You must:
1. Drop the trigger.
2. Encrypt or decrypt the column.
3. Re-create the trigger.

● You cannot change an existing encrypted column, modify a column for encryption or decryption on a table,
or modify the type of an encrypted column if that column is a key in a clustered or placement index. You
must:
1. Drop the index.
2. Alter the table/modify the type of column.
3. Re-create the index.

Database Encryption
Column Encryption P U B L I C 61

You can alter the encryption property on a column at the same time you alter other attributes. You can also add
an encrypted column using alter table.

For example:

alter table customer modify custid null encrypt with cc_key alter table customer add address varchar(50) encrypt with cc_key

7.3 Index Creation and Constraints on Encrypted Columns

You can create an index on an encrypted column if the encryption key has been specified without any
initialization vector or random padding.

An error occurs if you execute create index on an encrypted column that has an initialization vector or
random padding. Indexes on encrypted columns are generally useful for equality and nonequality matches.
However, indexes are not useful for matching case-insensitive data, or for range searches of any data.

 Note
You cannot use an encrypted column in an expression for a functional index.

In the following example, cc_key specifies encryption without using an initialization vector or padding. This
allows an index to be built on any column encrypted with cc_key:

create encryption key cc_key with init_vector null
create table customer(custid int,
 creditcard varchar(16) encrypt with cc_key) create index cust_idx on customer(creditcard)

You can encrypt a column that is declared as a primary or unique key.

You can define referential integrity constraints on encrypted columns when:

● Both referencing and referenced columns are encrypted with the same key.
● The key used to encrypt the columns specifies init_vector null and pad random has not been

specified.

Referential integrity checks are efficient because they are performed on cipher text values.

In this example, ssn_key encrypts the ssn column in both the primary and foreign tables:

create encryption key ssn_key for AES with init_vector null
create table user_info (ssn char(9) primary key encrypt
 with ssn_key, uname char(50), uaddr char(100))
create table tax_detail (ssn char(9) references user_info encrypt with ssn_key, return_info text)

62 P U B L I C
Database Encryption
Column Encryption

7.4 Domain Creation and Access Rules on Encrypted
Columns

You can create domain rules, check constraints, or access rules on encrypted columns. However, decrypt
permission is required on an encrypted column when it is used in target list, where clause, and so on.

This example creates the rule_creditcard rule on the creditcard column, which has a domain rule
defined:

create encryption key cc_key with init_vector null
create table customer(custid int,
 creditcard varchar(16) encrypt with cc_key)
create rule rule_creditcard
as @value like '%[0-9]' sp_bindrule rule_creditcard, creditcard

bcp in -C bypasses the domain rule or check constraint for encrypted columns because SAP ASE uses fast
bcp with bcp in -C. bcp out -C generates error number 2929 if an access rule exists on the encrypted
column. SAP ASE bypasses the rule or constraint for insert and update statements when you replicate
encrypted columns with domain rules or check constraints. SAP ASE also generates error number 2929 when
you replicate encrypted columns with access rules for update, delete, or select statements.

7.5 Decrypt Permission

Users must have decrypt permission to select plain text data from an encrypted column, or to search or join on
an encrypted column.

The table owner or a user with the sso_role uses grant decrypt to grant explicit permission to decrypt one
or more columns in a table to other users, groups, and roles. Decrypt permission may be implicitly granted
when a procedure or view owner grants:

● exec permission on a stored procedure or user-defined function that selects from an encrypted column
where the owner of the procedure or function also owns the table containing the encrypted column

● decrypt permission on a view column that selects from an encrypted column where the owner of the view
also owns the table

In both cases, decrypt permission need not be granted on the encrypted column in the base table.

The syntax is:

 grant decrypt on [<owner>.] <table> [(<column>[{,<column>}])] to <user>| <group> | <role> [with grant option]

Granting decrypt permission at the table or view level grants decrypt permission on all encrypted columns in
the table.

Database Encryption
Column Encryption P U B L I C 63

To grant decrypt permission on all encrypted columns in the customer table, enter:

grant decrypt on customer to accounts_role

The following example shows the implicit decrypt permission of user2 on the ssn column of the base table
“employee”. user1 sets up the employee table and the employee_view as follows:

create table employee (ssn varchar(12)encrypt, dept_id int, start_date date, salary money)
create view emp_salary as select
 ssn, salary from employee grant select, decrypt on emp_salary to user2

user2 has access to decrypted Social Security Numbers when selecting from the emp_salary view:

select * from emp_salary

 Note
grant all on a table or view does not grant decrypt permission. Decrypt permission must be granted
separately.

Users with only select permission on an encrypted column can still process encrypted columns as cipher text
through the bulk copy command. Additionally, if an encrypted column specifies a decrypt default value, the
column can be named in a select target list or in a where clause by users who do not have permission to
decrypt data.

Related Information

Restrict Decrypt Permission [page 65]
Default Values Returned Instead of Decrypted Data [page 66]

7.5.1 Revoking Decryption Permission

revoke decrypt on revokes a user's decryption permission.

Context

The syntax is:

 revoke decrypt on [<owner>] <table>[(<column>[{,<column>}])] from <user> | <group> | <role>

For example:

revoke decrypt on customer from public

64 P U B L I C
Database Encryption
Column Encryption

7.6 Restrict Decrypt Permission

Restrict access to private data from the database owner by setting the restricted decrypt permission
configuration parameter.

SAP ASE protects data privacy from the powers of the administrator even if you use the master key or system
encryption password for key protection. If you prefer to avoid password management and use the master key
or the system encryption password to protect encryption keys, you can restrict access to private data from the
database owner by setting the restricted decrypt permission configuration parameter. System
security officers (SSOs) can use this parameter to control which users have decrypt permission. Once
restricted decrypt permission is enabled, the SSO is the only user who receives implicit decrypt
permission and who has implicit privilege to grant that permission to others. The SSO determines which users
receive decrypt permission, or delegates this job to another user by granting decrypt permission with the with
grant option. Table owners do not automatically have decrypt permission on their tables.

Users with execute permission on stored procedures or user-defined functions do not have implicit permission
to decrypt data selected by the procedure or function. Users with decrypt permission on a view column do not
have implicit permission to decrypt data selected by the view.

 Note
Users with aliases continue to inherit all decrypt permissions of the user to whom they are aliased. set
proxy/set user statements continue to allow the administrator or database owner the decrypt
permissions of the user whose identity is assumed by this command.

If you are using restricted decrypt permission, you can assign the privileges for creating the task’s schema and
managing keys as follows:

● System security officer – configures restricted decrypt permission, creates encryption keys, grants
select permission on keys to the database owner, and grants decrypt permission to the end user.

● Database owner – creates the schema and loads data.

Related Information

Protect Encryption Keys with the Master Key [page 19]
Decrypt Permission [page 63]

Database Encryption
Column Encryption P U B L I C 65

7.7 Default Values Returned Instead of Decrypted Data

When users who are not permitted to see confidential data run queries against encrypted columns, they see
the decrypt defaults instead of the decrypted data. Decrypt defaults allow legacy applications and reports to
run without error, even for users who are not permitted to see confidential data.

Related Information

Decrypt Permission [page 63]

7.7.1 Defining Decrypt Defaults

The decrypt_default parameter for create table and alter table allows an encrypted column to
return a user-defined value when a user without decrypt permission attempts to select information from the
encrypted column.

Context

Doing so avoids error message 10330:

Decrypt permission denied on object <table_name>, database <database name>, owner <owner name>

Using decrypt defaults on encrypted columns allows existing reports to run to completion without error, and
allows users to continue seeing the information that is not encrypted. For example, if the customer table
contains the encrypted column creditcard, you can design the table schema so that:

select * from customer

Returns the value “****************” instead of returning the credit card data to users who lack decrypt
permission.

Add a decrypt default on a new column with create table. The partial syntax for create table is:

create table <table_name> (<column_name> <datatype> [[encrypt [with <keyname>]] [decrypt_default <value>]],)

● decrypt_default – specifies that this column returns a default value on a select statement for users
who do not have decrypt permissions.

● <value> – is the value SAP ASE returns on select statements instead of the decrypted value. A constant-
valued expression cannot reference a database column but it can include a user-defined function which
itself references tables and columns. The value can be NULL on nullable columns only, and the value must
be convertible into the column’s datatype.

66 P U B L I C
Database Encryption
Column Encryption

For example, the ssnum column for table t2 returns “?????????” when a user without decrypt permissions
selects it:

create table t2 (ssnum char(11) encrypt decrypt_default '???????????', ...)

To add encryption and a decrypt default value to an existing column not previously encrypted, use:

alter table <table_name> modify <column_name> [type] [[encrypt [with <keyname>]] [decrypt_default <value>]], …

This example modifies the emp table to encrypt the ssn column and specifies decrypt default:

alter table emp modify ssn encrypt with key1 decrypt_default '000-00-0000'

To add a decrypt default to an existing encrypted column or change the decrypt default value on a column that
already has a decrypt default, use:

alter table <table_name> replace <column_name> decrypt_default <value>

This example adds a decrypt default to the salary column, which is already encrypted:

alter table employee replace salary decrypt_default $0.00

This example replaces the previous decrypt_default value with a new value and uses a user-defined
function (UDF) to generate the default value:

alter table employee replace salary decrypt_default dbo.mask_salary()

To remove a decrypt default from an encrypted column without removing the encryption property, use:

alter table <table_name> replace <column_name> drop decrypt_default

This example removes the decrypt default for salary without removing the encryption property:

alter table employee replace salary drop decrypt_default

7.7.2 Permissions and Decrypt Default

You must grant decrypt permission on encrypted columns before users or roles can select or search on
encrypted data in those columns. If an encrypted column has a decrypt default attribute, users without decrypt
permission can run queries that select or search on these columns, but the plain text data is not displayed and
is not used for searching.

Database Encryption
Column Encryption P U B L I C 67

In this example, the owner of table emp allows users with the hr_role to view emp.ssn. Because the ssn
column has a decrypt default, users who have only select permission on emp and who do not have the
hr_role see the <decrypt_default> value only and not the actual decrypted data.

create table emp (name char(50), ssn (char(11) encrypt decrypt_default
'000-00-000', ...) grant select permission on table emp to public grant decrypt on emp(ssn) to hr_role

If you have the hr_role and select from this table, you see the values for ssn:

select name, ssn from emp

name ssn ------------------------------ ------------
Joe Cool 123-45-6789 Tinna Salt 321-54-9879

If you do not have the hr_role and select from the table, you see the decrypt default:

select name, ssn from emp

name ssn ------------------------------ -----------
Joe Cool 000-00-0000 Tinna Salt 000-00-0000

order by clauses have no effect on the result set if you do not have the hr_role for this table.

7.7.3 Columns with Decrypt Default Values

There are no restrictions on how you use columns with decrypt default in a query. You can use them in a
target list expression, where clause, order by, group by, or subquery.

Although expressions on the decrypt default constant value may not have a practical use, placing a decrypt
default on a column does not impose any syntactic restrictions on use of the column in a Transact-SQL
statement.

This example uses a select statement on a column with a decrypt default value in the target list:

create table emp_benefits (col1 name char(30), salary float encrypt decrypt_default -99.99)

select salary/12 as monthly_salary from emp_benefits where name = 'Bill Smith'

When you perform the select statement against this table, but do not have decrypt permission, you see:

monthly_salary --------------------- 8.332500

68 P U B L I C
Database Encryption
Column Encryption

When SAP ASE returns a column’s decrypt default value on a select into command, this decrypt default
value is inserted into the target table. However, the target column does not inherit the decrypt default property.
You must use alter table to specify a decrypt default on the target table.

Use sp_checksource to view decrypt default source text defined on encrypted columns.

7.7.4 Decrypt Default Columns and Query Qualifications

If you use a column with the decrypt default property in a where clause, the qualification evaluates to false if
you do not have decrypt permission.

These examples use the emp table described above. Only users with the hr_role have decrypt permission on
ssn.

● If you have the hr_role and issue the following query, SAP ASE returns one row.

select name from emp where ssn = '123-456-7890'

name ------------------------------ Joe Cool

● If you do not have the hr_role, SAP ASE returns no rows:

select name from emp where ssn = '123-456-7890'

name ------------------------------ (0 rows affected)

● If you have the hr_role and include an or statement on a nonencrypted column, SAP ASE returns the
appropriate rows:

select name from emp where ssn = '123-456-7890' or name like 'Tinna%'

name ------------------------------
Joe Cool Tinna Salt

● If you do not have the hr_role and issue the same command, SAP ASE returns only one row:

select name from emp where ssn = '123-456-7890' or name like 'Tinna%'

name ------------------------------ Tinna Salt

In this case, the qualification against the encrypted column with the decrypt default property evaluates to
false, but the qualification against the nonencrypted column succeeds.
If you do not have decrypt permission on an encrypted column, and you issue a group by statement on
this column with a decrypt default, SAP ASE groups by the decrypt default constant value.

Database Encryption
Column Encryption P U B L I C 69

Related Information

Encrypted Columns Process [page 79]

7.7.5 decrypt default and Implicit Grants

If you do not have explicit or implicit permission on a table, SAP ASE returns the decrypt default value.

In this example (using the emp table), the database owner creates the p_emp procedure which selects from the
emp table that he or she owns:

create procedure p_emp as select name, ssn from emp grant exec on p_emp to corp_role

Because you have the corp_role, you have implicit select and decrypt permission on emp

exec p_emp

name ssn ------------------------------ ------------
Tinna Salt 123-45-6789 Joe Cool 321-54-9879

If the emp table and p_emp stored procedure have been created by different users, you must have select
permission on emp to avoid permissions errors. If you have select permission but not decrypt permission,
SAP ASE returns the decrypt default value of emp.ssn.

In this next example, “joe,” who does not own the database, creates the v_emp view, which selects from the emp
table. Any permissions granted on the view are not implicitly applied to the base table.

create view v_emp as select name, ssn from emp
grant select on v_emp to emp_role
grant select on emp to emp_role grant decrypt on v_emp to emp_role

Although you have the emp_role, when you issue:

select * from joe.v_emp

SAP ASE returns the following because decrypt permission on dbo.emp.ssn has not been granted to the
emp_role, and there is no implicit grant to emp_role on dbo.emp.ssn:

name ssn -------------------------- ---------------
Tinna Salt 000-00-0000 Joe Cool 000-00-0000

70 P U B L I C
Database Encryption
Column Encryption

7.7.6 decrypt default and insert, update, and delete
Statements

The decrypt default parameter does not affect target lists of insert and update statements. If you use a
column with a decrypt default value in the where clause of an update or delete statement, SAP ASE may not
update or delete any rows.

For example, when using the emp table and permissions from the previous examples, if you do not have the
hr_role and issue the following query, SAP ASE does not delete the user’s name:

delete emp where ssn = '123-45-6789' (0 rows affected)

Decrypt default attributes may indirectly affect inserting and updating data into an application, particularly one
with a graphical user interface (GUI) process:

1. Selects data.
2. Allow a user to update any of the data.
3. Applies the changed row back to the same or a different table.

If the user does not have decrypt permission on the encrypted columns, the application retrieves the decrypt
default value and may automatically write the unchanged decrypt default value back to the table. To avoid
overwriting valid data with decrypt default values, use a check constraint to prevent these values from being
automatically applied. For example:

create table customer (name char(30)), cc_num int check (cc_num != -1) encrypt decrypt_default -1

If the user does not have decrypt permission on cc_num and selects data from the customer table, this data
appears:

name cc_num -------------------- ------------
Paul Jones -1 Mick Watts -1

However, if the user changes a name and updates the database, and the application attempts to update all
fields from the values displayed, the default value for cc_num causes SAP ASE to issue error 548:

"Check constraint violation occurred, dbname = <dbname>, table name = <table_name>, constraint name = <internal_constraint _name>"

Setting a check constraint protects the integrity of the data. For a better solution, you can filter these updates
when you write the application’s logic.

Database Encryption
Column Encryption P U B L I C 71

7.7.7 Removing Decrypt Defaults

Multiple commands allow you to remove decrypt defaults.

Context

Remove the decrypt default using any of these commands:

● drop table
● alter table .. modify .. drop col
● alter table .. modify .. decrypt
● alter table .. replace .. drop decrypt_default

For example, to remove the decrypt default attribute from the ssn column, enter:

alter table emp replace ssn drop decrypt_default

If you do not have the hr_role and select from the emp table after the table owner removed the decrypt
default, SAP ASE returns error message 10330.

7.8 Length of Encrypted Columns

During create table, alter table, and select into operations, SAP ASE calculates the maximum
internal length of the encrypted column. To make decisions on schema arrangements and page sizes, the
database owner must know the maximum length of the encrypted columns.

AES is a block-cipher algorithm. The length of encrypted data for block-cipher algorithms is a multiple of the
block size of the encryption algorithm. For AES, the block size is 128 bits, or 16 bytes. Therefore, encrypted
columns occupy a minimum of 16 bytes with additional space for:

● The initialization vector. If used, the initialization vector adds 16 bytes to each encrypted column. By
default, the encryption process uses an initialization vector. Specify init_vector null on create
encryption key to omit the initialization vector.

● The length of the plain text data. If the column type is char, varchar, binary, or varbinary, the data
is prefixed with 2 bytes before encryption. These 2 bytes denote the length of the plain text data. No extra
space is used by the encrypted column unless the additional 2 bytes result in the cipher text occupying an
extra block.

● A sentinel byte, which is a byte appended to the cipher text to safeguard against the database system
trimming trailing zeros.

72 P U B L I C
Database Encryption
Column Encryption

Table 1: Datatype Length for Encrypted Columns

User-specified col
umn type

Input data
length

Encrypted
column type

Maximum en
crypted data
length (no init
vector)

Actual en
crypted data
length (no init
vector)

Maximum en
crypted data
length (with
init vector)

Actual en
crypted data
length (with
init vector)

bigint 8 varbinary 17 17 33 33

unsigned bigint 8 varbinary 17 17 33 33

tinyint,
smallint, or
int (signed or un
signed)

1, 2, or 4 varbinary 17 17 33 33

tinyint,
smallint, or
int (signed or un
signed)

0 (null) varbinary 17 0 33 0

float,
float(4), real

4 varbinary 17 17 33 33

float,
float(4), real

0 (null) varbinary 17 0 33 0

float(8),
double

8 varbinary 17 17 33 33

float(8),
double

0 (null) varbinary 17 0 33 0

numeric(10,2) 3 varbinary 17 17 33 33

numeric (38,2) 18 varbinary 33 33 49 49

numeric (38,2) 0 (null) varbinary 33 0 49 0

char, varchar
(100)

1 varbinary 113 17 129 33

char,
varchar(100)

14 varbinary 113 17 129 33

char,
varchar(100)

15 varbinary 113 33 129 49

char,
varchar(100)

31 varbinary 113 49 129 65

Database Encryption
Column Encryption P U B L I C 73

User-specified col
umn type

Input data
length

Encrypted
column type

Maximum en
crypted data
length (no init
vector)

Actual en
crypted data
length (no init
vector)

Maximum en
crypted data
length (with
init vector)

Actual en
crypted data
length (with
init vector)

char,
varchar(100)

0 (null) varbinary 113 0 129 0

binary,
varbinary(100)

1 varbinary 113 17 129 33

binary,
varbinary(100)

14 varbinary 113 17 129 33

binary,
varbinary(100)

15 varbinary 113 33 129 49

binary,
varbinary(100)

31 varbinary 113 49 129 65

binary,
varbinary(100)

0 (null) varbinary 113 0 65 0

unichar(10) 2 (1
unichar
character)

varbinary 33 17 49 33

unichar(10) 20 (10
unichar
characters)

varbinary 33 33 49 49

univarchar(20) 20 (10
unichar
characters)

varbinary 49 33 65 49

date 4 varbinary 17 17 33 33

time 4 varbinary 17 17 33 33

time null varbinary 17 0 33 0

smalldatetime 4 varbinary 17 17 33 33

datetime 8 varbinary 17 17 33 33

smallmoney 4 varbinary 17 17 33 33

money 8 varbinary 17 17 33 33

money null varbinary 17 0 33 0

74 P U B L I C
Database Encryption
Column Encryption

User-specified col
umn type

Input data
length

Encrypted
column type

Maximum en
crypted data
length (no init
vector)

Actual en
crypted data
length (no init
vector)

Maximum en
crypted data
length (with
init vector)

Actual en
crypted data
length (with
init vector)

bit 1 varbinary 17 17 33 33

 Note
● The timestamp datatype is not supported by SAP ASE.
● char and binary are treated as variable-length datatypes and are stripped of blanks and zero padding

before encryption. Any blank or zero padding is applied when the data is decrypted.
● The column length on disk increases for encrypted columns, but the increases are invisible to tools and

commands. For example, sp_help shows only the original size.

7.9 Encrypted Column Audits

You can perform and manage encrypted column audits with sp_audit.

See Auditing in the Security Administration Guide.

7.9.1 Event Names and Numbers

You can query the audit trail for specific audit events.

Use audit_event_name with <event id> as a parameter.

audit_event_name(<event_id>)

See Auditing in the Security Administration Guide for values that appear in the event column of sysaudits.

Database Encryption
Column Encryption P U B L I C 75

7.9.2 Auditing Actions of the Key Custodian

You can audit all actions in which the keycustodian_role is active.

Context

The syntax is:

sp_audit "all", "keycustodian_role", "all", "on"

7.10 Performance Considerations

Encryption is a resource-intensive operation that may introduce a performance overhead to your application in
terms of CPU usage and the elapsed time of commands that use encrypted columns.

The amount of overhead depends on the number of CPUs and SAP ASE engines, the load on the system, the
number of concurrent sessions accessing the encrypted data, and the number of encrypted columns
referenced in a query. The encryption key size and the length of the encrypted data are also factors. In general,
the larger the key size and the wider the data, the higher the CPU usage in the encryption operation.

The elapsed time depends on whether the SAP ASE optimizer can make use of an encrypted column.

Related Information

Creating Column Encryption Keys [page 12]
Dropping Column Encryption Keys [page 15]
Encrypted Columns Process [page 79]

7.10.1 Indexes on Encrypted Columns

You can create an index on an encrypted column if the column’s encryption key does not specify the use of an
initialization vector or random padding.

Using an initialization vector or random padding results in identical data being encrypting to different patterns
of cipher text, which prevents an index from enforcing uniqueness and from performing equality matching of
data in cipher text form.

Indexes on encrypted data are useful for equality and nonequality matching of data but not for data ordering,
range searches, or finding minimum and maximum values. If SAP ASE is performing an order-dependent

76 P U B L I C
Database Encryption
Column Encryption

search on an encrypted column, it cannot execute an indexed lookup on encrypted data. Instead, the
encrypted column in each row must be decrypted and then searched. This slows data processing.

7.10.2 Sort Orders and Encrypted Columns

If you use a case-insensitive sort order, SAP ASE cannot use an index on an encrypted char or varchar
column when performing a join with another column or a search based on a constant value. This is also true of
an accent-insensitive sort order.

For example, For example, in a case-insensitive search, the string abc matches all strings in the following range:
abc, Abc, ABc, ABC, AbC, aBC, aBc, abC. SAP ASE must compare abc against this range of values. By contrast,
a case-sensitive comparison of the string abc to the column data matches only identical column values, that is,
columns containing abc. The main difference between case-insensitive and case-sensitive column lookups is
that case-insensitive matching requires SAP ASE to perform a range search whereas case-sensitive matching
requires an equality search.

An index on a nonencrypted character column orders the data according to the defined sort order. For
encrypted columns, the index orders the data according to the cipher text values, which bears no relationship
to the ordering of plain text values. Therefore, an index on an encrypted column is useful only for equality and
non-equality matching and not for searching a range of values. abc and Abc encrypt to different cipher text
values and are not stored adjacently in an index.

When SAP ASE uses an index on an encrypted column, it compares column data in cipher text form. For case
sensitive data, you do not want abc to match Abc, and the cipher text join or search based on equality
matching works well. SAP ASE can join columns based on cipher text values and can efficiently match where
clause values. In this example, the maidenname column is encrypted:

select account_id from customer where cname = 'Peter Jones' and maidenname = 'McCarthy'

Providing that maidenname has been encrypted without use of an initialization vector or random padding, SAP
ASE encrypts McCarthy and performs a cipher text search of maidenname. If there is an index on
maidenname, the search uses of the index.

7.10.3 Joins on Encrypted Columns

SAP ASE optimizes the joining of two encrypted columns by performing cipher text comparisons under certain
circumstances.

● The joining columns have the same datatype. For cipher text comparisons, char and varchar are
considered to be the same datatypes, as are binary and varbinary.

● For int and float types, the columns have the same length. For numeric and decimal types, the
columns must have the same precision and scale.

● The joining columns are encrypted with the same key.
● The joining columns are not part of an expression. For example, you cannot perform a cipher text join on a

join where t.encr_col1 = s.encr_col1 +1.

Database Encryption
Column Encryption P U B L I C 77

● The encryption key was created with init_vector and pad set to NULL.
● The join operator is ‘=’ or ‘<>’.
● The data uses the default sort order.

This example sets a schema to join on cipher text:

create encryption key new_cc_key for AES with init_vector NULL
create table customer
 (custid int,
 creditcard char(16) encrypt with new_cc_key)
create table daily_xacts
 (cust_id int, creditcard char(16) encrypt with new_cc_key, amount money........)

You can also set up indexes on the joining columns:

create index cust_cc on customer(creditcard)create index daily_cc on
daily_xacts(creditcard)

SAP ASE executes the following select statement to total a customer’s daily charges on a credit card without
decrypting the creditcard column in either the customer or the daily_xacts table.

select sum(d.amount) from daily_xacts d, customer c where d.creditcard = c.creditcard and c.custid = 17936

7.10.4 Search Arguments and Encrypted Columns

For equality and nonequality comparison of an encrypted column to a constant value, SAP ASE optimizes the
column scan by encrypting the constant value once, rather than decrypting the encrypted column for each row
of the table.

For example:

select sum(d.amount) from daily_xacts d where creditcard = '123-456-7890'

SAP ASE cannot use an index to perform a range search on an encrypted column; it must decrypt each row
before performing data comparisons. If a query contains other predicates, SAP ASE selects the most efficient
join order, which often leaves searches against encrypted columns until last, on the smallest data set.

If your query has more than one range search without a useful index, write the query so that the range search
against the encrypted column is last. This example which searches for the Social Security Numbers of
taxpayers earning more than $100,000 in Rhode Island positions the zipcode column before the range search
of the encrypted adjusted gross income column:

select ss_num from taxpayers where zipcode like '02%' and agi_enc > 100000

78 P U B L I C
Database Encryption
Column Encryption

Referential Integrity Searches

Referential integrity probes match at the cipher text level if both the following are true:

● The datatypes of the primary key and foreign key match according to the rules described above.
● The encryption of the primary and foreign keys meets the key requirements for joining columns.

7.10.5 Movement of Encrypted Data as Cipher Text

As much as possible, SAP ASE optimizes the copying of encrypted data by copying cipher text instead of
decrypting and reencrypting data. This applies to select into commands, bulk copying, and replication.

7.11 Access Encrypted Data

SAP ASE automatically performs encryption and decryption when you process data in encrypted columns.
SAP ASE encrypts data when you update or insert data into an encrypted column, and decrypts data when you
select it or use it in a where clause.

7.11.1 Encrypted Columns Process

When you issue a select, insert, update, or delete command against an encrypted column, SAP ASE
automatically encrypts or decrypts the data using the encryption key associated with the encrypted column.

● When you issue an insert or update on an encrypted column:
○ If you do not have insert or update permission on the encrypted column, the command fails.
○ If the column is encrypted by a key with a user-specified password, SAP ASE expects the password to

be available. If the user-specified password has not been set, the command fails.
○ SAP ASE decrypts the encryption key.
○ SAP ASE encrypts the data using the column’s encryption key.
○ SAP ASE inserts the varbinary cipher text data into the table.
○ After the insert or update, SAP ASE clears the memory holding the plain text. At the end of the

statement, it clears the memory holding the raw encryption keys.
● When you issue a select command on data from an encrypted column:

○ The command fails if you do not have select permission on the encrypted column.
○ If the encryption key is associated with a column encrypted with a user-specified password, SAP ASE

expects the password to be available. If the user-specified password has not been set, the select
statement fails. Otherwise, SAP ASE decrypts the encryption key.

○ The decryption of the selected data succeeds if you have decrypt permission on the column, and SAP
ASE returns plain text data to the user.

○ If a decrypt default has been declared on the encrypted column and if you do not have decrypt
permission on the column, SAP ASE returns the decrypt default value.

Database Encryption
Column Encryption P U B L I C 79

● When you include encrypted columns in a where clause:
○ If you do not have decrypt permission on the column, and the column includes a decrypt default, the

where clause predicate evaluates to false.
○ When possible, SAP ASE makes the comparison without decrypting the data if:

○ The where clause joins an encrypted column with another column encrypted by the same key
without use of an initialization vector or random pad

○ The column data is being matched with an equality or an inequality condition to a constant value

Related Information

Access Encrypted Data with a User Password [page 89]
Decrypt Default Columns and Query Qualifications [page 69]
Performance Considerations [page 76]

7.11.2 Permissions for Decryption

To see or process decrypted data, users must have certain permissions.

User must have:

● select and decrypt permissions on the column used in the target list and in where, having, order by,
group by, and other such clauses

● A password used to encrypt the key if you use the passwd <password_phrase> clause with the create
or alter encryption key commands.

Configuring SAP ASE for restricted decrypt permission restricts implicit decrypt permissions. You
must explicitly grant table owners decrypt permission to enable them to select from an encrypted column on
tables that they own. execute permission on a stored procedure or select permission on a view does not
implicitly grant users decrypt permission on the underlying encrypted data through an ownership chain. The
user must also have explicit decrypt permission on the base table.

7.11.3 Drop Encryption

If you are a table owner, you can use alter table with the decrypt option to drop encryption on a column.

For example, to drop encryption on the creditcard column in the customer table, enter:

alter table customer modify creditcard decrypt

If the creditcard column was encrypted by a key with an explicit user password, you would need to set that
password first.

80 P U B L I C
Database Encryption
Column Encryption

8 Role of the Key Custodian

The key custodian, who must be assigned the keycustodian_role, maintains encryption keys. Using the
keycustodian_role role allows you to separate the duties for administering confidential data by ensuring
that no administrator has implicit access to data.

This figure illustrates that the database owner, as the schema owner, controls permissions for accessing the
data, but has no access without knowledge of the key’s password. The key custodian, however, administers
keys and their passwords, but has no permissions on the data. Only the qualified end user, with permissions on
the data and knowledge of the encryption key's password, can access the data.

The system administrator and database owner do not have implicit key management responsibilities. SAP ASE
provides the system role keycustodian_role so that the SSO need not assume all encryption responsibility.
The key custodian owns the encryption keys, but should have no explicit or implicit permissions on the data.
The database owner grants users access to data through column permissions, and the key custodian allows
users access to the key’s password. keycustodian_role is automatically granted to sso_role and can be
granted by a user with the sso_role.

The key custodian can:

● Create and alter encryption keys.
● Assign as the database default key a key he or she owns, as long as he or she also owns the current default

key, if one exists.
● Set up key copies for designated users, allowing each user access to the key through a chosen password or

a login password.
● Share key encryption passwords with end users.
● Grant schema owners select access to encryption keys on keys owned by the key custodian.
● Create the master key or set the system encryption password.
● Recover encryption keys.

Database Encryption
Role of the Key Custodian P U B L I C 81

● Drop his or her own encryption keys.
● Change ownership of keys he or she owns.

You can have multiple key custodians, who each own a set of keys. The key custodian grants the schema owner
permission to use the keys on create table, alter table, and select into, and may disclose the key
password to privileged users or allow users to associate key copies with a personal password or a login
password. The key custodian can work with a “key recoverer” to recover keys in the event of a lost password or
disaster. If the key custodian leaves the company, the SSO can use the alter encryption key command to
change key ownership to a new key custodian.

Related Information

Creating Column Encryption Keys [page 12]
Dropping Column Encryption Keys [page 15]

8.1 Users, Roles, and Data Access

User-specified passwords on encryption keys ensure that data privacy is protected from the system
administrator.

● The key custodian can own the keys, but not see the data.
● The database owner can own the schema, but not the data.
● A user can see and process the data because of:

○ Key access, granted by the key custodian
○ Data access, granted by the table owner

Role
Can Create Encryp
tion Key?

Can Use Key in a Schema
Definition? Can Decrypt Encrypted Data?

sso_role Yes No, requires create
table permission

No. User with role may have knowledge of
password, but requires select permission
on table (SSO has implicit decrypt per
mission).

sa_role No, requires create
encryption key
permission

Yes, but must be granted
select permission on
the key

No, requires knowledge of password

keycustodian_role Yes No, requires create
table permission

No. User with role may have knowledge of
password, but requires decrypt and
select permission.

82 P U B L I C
Database Encryption

Role of the Key Custodian

Role
Can Create Encryp
tion Key?

Can Use Key in a Schema
Definition? Can Decrypt Encrypted Data?

database owner or
schema owner

No, requires create
encryption key
permission

Yes, but must be granted
select permission on
the key

No, requires knowledge of password.

User No No Yes, but must be granted decrypt or
select permission and have knowledge
of key’s password.

Database Encryption
Role of the Key Custodian P U B L I C 83

9 Key Protection Using User-Specified
Passwords

Use create encryption key to associate a password with a key.

The syntax is:

 create encryption key [[db.][owner].]keyname [as default] [for <algorithm_name>] [with {[keylength num_bits] [passwd '<password_phrase>'] [init_vector {NULL | random}] [pad {NULL | random}]}]

where <password_phrase> is a quoted alphanumeric string of up to 255 bytes in length that SAP ASE uses to
generate thekey encryption key (KEK).

SAP ASE does not save the user-specified password. It saves a string of validating bytes known as the “salt” in
sysencryptkeys.eksalt, which allows SAP ASE to recognize whether a password used on a subsequent
encryption or decryption operation is legitimate for a key. You must supply the password to SAP ASE before
you can access any column encrypted by keyname.

When you create an encryption key, its entry in the sysencryptkeys table is known as the base key. For some
users and applications, the base key, encrypted by either the master key, the system encryption password, or
an explicit password, is sufficient. Any explicit password is shared among users requiring access to the key.
Additionally, you can create key copies for different users and applications. Each key copy can be encrypted by
an individual password and is stored as a separate row in sysencryptkeys. An encryption key is always
represented by one base key and zero or more key copies.

This example shows how to use passwords on keys, and the key custodian’s function in setting up encryption.
The password on the key is shared among all users who have a business need to process encrypted data.

1. Key custodian “razi” creates an encryption key:

create encryption key key1 with passwd 'Worlds1Biggest6Secret'

2. “razi” distributes the password to all users who need access to encrypted data.
3. Each user enters the password before processing tables with encrypted columns:

set encryption passwd 'Worlds1Biggest6Secret' for key razi.key1

4. If the key is compromised because an unauthorized user gained access to the password, “razi” alters the
key to change the password.

Related Information

Protect Keys with User-Specified Passwords [page 21]

84 P U B L I C
Database Encryption

Key Protection Using User-Specified Passwords

9.1 Change a Key’s Protection Method

You can use the alter encryption key command to change the protection method for an encryption key.

The syntax is:

 alter encryption key [[<database>.database][<owner>].] <keyname> [with {passwd {'old_passwd' | system_encr_passwd
 | login_passwd} | master key}]
 modify encryption
 [with [{passwd {'old_passwd' | system_encr_passwd | login_passwd} | master key}] [[no] dual_control]]

where:

● <keyname> – identifies a column encryption key.
● with passwd '<old_password>' – specifies the user-defined password previously specified to encrypt

the base key or the key copy with a create encryption key or alter encryption key statement.
The password can be up to 255 bytes long. If you do not specify with passwd on the base key, the default
is the master key or the system encryption password.

● with passwd '<new_password>' – specifies the new password SAP ASE uses to encrypt the column
encryption key or key copy. The password can be up to 255 bytes long. If you do not specify with passwd
and you are encrypting the base key, the default is system_encr_passwd.

● system_encr_passwd – is the default encryption password. You cannot modify the base key to be
encrypted with the system encryption password if one or more key copies already exist. This restriction
prevents the key custodian from inadvertently exposing an encryption key to access by an administrator
after the key custodian has set up the key for restricted use by individual users. You cannot modify key
copies to encrypt using the system encryption password.

● <login_passwd> – is the login password of the current session. You cannot modify the base key to use
<login_password> for encryption. A user can modify his own key copy to encrypt with his login
password.

● master key – in the first instance indicates that the current encryption uses the master key. In the
second instance, it indicates that the KEK or CEK must be re-encrypted with the master key.

Example 1: In this example, the key custodian alters the base key because the password was compromised or a
user who knew the password left the company.

1. Key custodian “razi” creates an encryption key:

create encryption key key1 with passwd 'MotherOfSecrets'

2. “razi” shares the password on the base key with “joe” and “bill”, who need to process the encrypted data
(no key copies are involved).

3. “joe” leaves the company.
4. “razi” alters the password on the encryption key and then shares it with “bill”, and “pete”, who replaces

“joe.” The data does not need to be reencrypted because the underlying key has not changed, just the way
the key is protected. The following statement decrypts key1 using the old password and reencrypts it with
the new password:

alter encryption key key1 with passwd 'MotherOfSecrets'
 modify encryption

Database Encryption
Key Protection Using User-Specified Passwords P U B L I C 85

 with passwd 'FatherOfSecrets'

Example 2: Use the master key to encrypt an existing CEK “k2”:

alter encryption key k2 with passwd 'goodbye'
 modify encryption with master key

Example 3: Re-encrypt an existing CEK “k3” that is currently encrypted by the master key, to use dual control:

alter encryption key k3 modify encryption
 with master key dual_control

 Note
You can omit with master key in this example to achieve the same encryption.

Example 4: Re-encrypt an existing CEK “k4” that is currently encrypted by the master key and password
“k4_password”, to remove dual control. The CEK and all its key copies are controlled by a single key derived
from “k4_new_password”:

alter encryption key k4 with passwd 'k4_password'
 modify encryption
 with passwd 'k4_new_password' no dual_control

Example 5: Encrypt an existing CEK “k5” that is currently encrypted by the master key, for dual control
encrypted by the master key and password “k5_password”:

alter encryption key k5 modify encryption
 with passwd 'k5_password' dual_control

Example 6: Encrypt a CEK for dual control by the master key and password “k6_password”:

create encryption key k6 with passwd 'k6_password' dual_control

For user “ned”, encrypt his existing key copy of CEK “k6” that is currently encrypted with dual control by the
master key and password “k6_password”, for dual control by the master key and password
“k6_ned_password”:

alter encryption key k6 with passwd 'k6_password'
 add encryption
 with passwd 'k6_ned_password' for user ned

 Note
User “ned” cannot change the dual control property of his key copy.

86 P U B L I C
Database Encryption

Key Protection Using User-Specified Passwords

Example 7: Encrypt a CEK “k7” currently encrypted by the master and dual master key, to use the system
encryption password:

alter encryption key k7 modify encryption
 with passwd system_encr_passwd no dual control

Related Information

Protect Encryption Keys with Dual Control [page 21]

9.2 Create Key Copies

The key custodian may need to make a copy of the key temporarily available to an administrator or an operator
who must load data into encrypted columns or databases. Because this operator does not otherwise have
permission to access encrypted data, he or she should not have permanent access to a key.

You can make key copies available to individual users as follows:

● The key custodian uses create encryption key to create a key with a user-defined password. This key
is known as the base key.

● The key custodian uses alter encryption key to assign a copy of the base key to an individual user
with an individual password.

This syntax shows how to add a key encrypted using an explicit password for a designated user:

alter encryption key [<database>.[<owner>].]<key> with passwd '<base_key_password>' add encryption with passwd '<key_copy_password>' for <user_name> ''

where:

● <base_key_password> – is the password used to encrypt the base key, and may be known only by the
key custodian. The password can be upto 255 bytes in length. SAP ASE uses the first password to decrypt
the base column-encryption key.

● <key_copy_password> – the password used to encrypt the key copy. The password cannot be longer
than 255 bytes. SAP ASE makes a copy of the decrypted base key, encrypts it with a key encryption key
derived from the <key_copy_password>, and saves the encrypted base key copy as a new row in
sysencryptkeys.

● <user_name> – identifies the user for whom the key copy is made. For a given key, sysencryptkeys
includes a row for each user who has a copy of the key, identified by their user ID (uid).

● The key custodian adds as many key copies as there are users who require access through a private
password.

● Users can alter their copy of the encryption key to encrypt it with a different password.

The following example illustrates how to set up and use key copies with an encrypted column:

Database Encryption
Key Protection Using User-Specified Passwords P U B L I C 87

1. Key custodian “razi” creates the base encryption key with a user-specified password:

create encryption key key1 with passwd 'WorldsBiggestSecret'

2. “razi” grants select permission on key1 to database owner for schema creation:

grant select on key key1 to dbo

3. database owner creates schema and grants table and column-level access to “bill”:

create table employee (empname char(50), emp_salary money encrypt with
 razi.key1, emp_address varchar(200)) grant select on employee to bill grant decrypt on employee(emp_salary) to bill

4. Key custodian creates a key copy for “bill” and gives “bill” the password to his key copy. Only the key
custodian and “bill” know this password.

alter encryption key key1 with passwd 'WorldsBiggestSecret' add encryption with passwd 'justforBill' for user 'bill'

5. When “bill” accesses employee.emp_salary, he first supplies his password:

set encryption passwd 'justforBill' for key razi.key1 select empname, emp_salary from dbo.employee

When SAP ASE accesses the key for the user, it looks up that user’s key copy. If no copy exists for a given user,
SAP ASE assumes the user intends to access the base key.

 Note
If a user in a database is assigned an encryption key copy, the user will not be able to access the key copy if
they have activated sa_role. To access the key copy, do not activate sa_role.

9.3 Change Passwords on Key Copies

Once a user has been assigned a key copy, he or she can use alter encryption key to modify the key
copy’s password.

This example shows how a user assigned a key copy alters the copy to access data through his or her personal
password:

● Key custodian “razi” sets up a key copy on an existing key for “bill” and encrypts it with a temporary
password:

alter encryption key key1 with passwd 'MotherOfSecrets' add encryption with passwd 'just4bill' for user bill

● “razi” sends “bill” his password for access to data through key1.
● “bill” assigns a private password to his key copy:

alter encryption key razi.key1 with passwd 'just4bill' modify encryption with passwd 'billswifesname'

88 P U B L I C
Database Encryption

Key Protection Using User-Specified Passwords

Only “bill” can change the password on his key copy. When “bill” enters the command above, SAP ASE
verifies that a key copy exists for “bill”. If no key copy exists for “bill”, SAP ASE assumes the user is
attempting to modify the password on the base key and issues an error message:
Only the owner of object '<keyname>' or a user with sso_role can run this
command.
You cannot create key copies for user “guest” for login association.

9.4 Access Encrypted Data with a User Password

You must supply the encryption key’s password to encrypt or decrypt data on an insert, update, delete,
select, alter table, or select into statement.

If the system encryption password protects the encryption key, you need not supply the system encryption
password because SAP ASE can already access it. Similarly, if your key copy is encrypted with your login
password, SAP ASE can access this password while you remain logged in to the server. For keys encrypted with
an explicit password, you must set the password in your session before executing any command that encrypts
or decrypts an encrypted column with this syntax:

 set encryption passwd '<password_phrase>' for {key | column} {<keyname> | <column_name>}

where:

● <password_phrase> – is the explicit password specified with the create encryption key or alter
encryption key command to protect the key.

● key – indicates that SAP ASE uses this password to decrypt the key when accessing any column
encrypted by the named key

● <keyname> – may be supplied as a fully qualified name. For example:

[[<database>.][<owner>].]<keyname>

● column – specifies that SAP ASE use this password only in the context of encrypting or decrypting the
named column. End users do not necessarily know the name of the key that encrypts a given column.

● <column_name> – name of the column on which you are setting an encryption password. Supply
<column_name> as:

[[<database>.][<owner>].]<table_name>.<column_name>

Each user who requires access to a key encrypted by an explicit password must supply the password. SAP ASE
saves the password in encrypted form in the user session's internal context. SAP ASE removes the key from
memory at the end of the session by overwriting the memory with zeros.

This example illustrates how SAP ASE determines the password when it must encrypt or decrypt data. It
assumes that the ssn column in the employee and payroll tables is encrypted with key1, as shown in these
simplified schema creation statements:

create encryption key key1 with passwd "Ynot387" create table employee (ssn char (11) encrypt with key1, ename char(50)) create table payroll (ssn char(11) encrypt with key1, base_salary float)

Database Encryption
Key Protection Using User-Specified Passwords P U B L I C 89

1. The key custodian shares the password required to access employee.ssn with “susan”. He does not need
to disclose the name of the key to do this.

2. If “susan” has select and decrypt permission on employee, she can select employee data using the
password given to her for employee.ssn:

set encryption passwd "Ynot387" for column employee.ssn select ename from employee where ssn = '111-22-3456'

ename ----------------------- Priscilla Kramnik

3. If “susan” attempts to select data from payroll without specifying the password for payroll.ssn, the
following select fails (even if “susan” has select and decrypt permission on payroll):

select base_salary from payroll where ssn = '111-22-3456'

You cannot execute 'SELECT' command because the user encryption password has not been set.

To avoid this error, “susan” must first enter:

set encryption passwd "Ynot387" for column payroll.ssn

The key custodian may choose to share passwords on a column-name basis and not on a key-name basis to
avoid users hard-coding key names in application code, which can make it difficult for the database owner to
change the keys used to encrypt the data. However, if one key is used to encrypt several columns, it may be
convenient to enter the password once. For example:

set encryption passwd "Ynot387" for key key1 select base_salary from payroll p, employee e
 where p.ssn = e.ssn and e.ename = "Priscilla Kramnik"

If one key is used to encrypt several columns and the user is setting a password for the column, the user needs
to set password for all the columns they want to process. For example:

set encryption passwd 'Ynot387' for column payroll.ssn set encryption passwd 'Ynot387' for column employee.ssn
select base_salary from payroll p, employee e
 where p.ssn = e.ssn and e.ename = 'Priscilla Kramnik'

If a password is set for a column and then set at the key level for the key that encrypts the column, SAP ASE
discards the password associated with the column and retains the password at the key level. If two successive
entries for the same key or column are entered, SAP ASE retains only the latest. For example:

1. If a user mistypes the password for the column employee.ssn as “Unot387” instead of the correct
“Ynot387”:

set encryption passwd "Unot387" for column employee.snn

2. And then the user reenters the correct password, SAP ASE retains only the second entry:

set encryption passwd "Ynot387" for column employee.ssn

90 P U B L I C
Database Encryption

Key Protection Using User-Specified Passwords

3. If the user now enters the same password at the key level, SAP ASE retains only this last entry:

set encryption passwd "Ynot387" for key key1

4. If the user now enters the same password at the column level, SAP ASE discards this entry because it
already has this password at the key level:

set encryption passwd "Ynot387" for column payroll.ssn

If a stored procedure or a trigger references data encrypted by a user specified password, you must set the
encryption password before executing the procedure or the statement that fires the trigger.

 Note
SAP recommends that you do not place the set encryption passwd statement inside a trigger or
procedure; this could lead to unintentional exposure of the password through sp_helptext. Additionally,
hard-coded passwords require you to change the procedure or trigger when a password is changed.

Related Information

Encrypted Columns Process [page 79]

9.5 Application Transparency Using Login Passwords on
Key Copies

The key custodian can set up key copies for encryption using a user’s login password, and thereby providing
ease of use, better security, lower overhead, and application transparency.

● Ease of use – users whose login password is associated with a key can access encrypted data without
supplying a password.

● Better security – users have fewer passwords to track, and are less likely to write them down.
● Lower administrative overhead for key custodian – the key custodian need not manually distribute

temporary passwords to each user who requires key access through a private password.
● Application transparency – applications need not prompt for a password to process encrypted data.

Existing applications can take advantage of the measures to protect data privacy from the power of the
administrator.

To encrypt a key copy with a user’s login password, use:

alter encryption key [[<database>.][<owner>].]<keyname> with passwd '<base_key_password>' add encryption for user '<user_name>' for login_association

Database Encryption
Key Protection Using User-Specified Passwords P U B L I C 91

where login_association tells SAP ASE to create a key copy for the named user, which it later encrypts
with the user's login password. Encrypting a key copy with a login password requires:

1. Using alter encryption key, the key custodian creates a key copy for each user who requires key
access via a login password. SAP ASE attaches information to the key copy to securely associate the key
copy with a given user. The identifying information and key are temporarily encrypted using a key derived
from the master key or—if no master key exists—the system encryption password. The key copy is saved in
sysencryptkeys.

2. When a user processes data requiring a key lookup, SAP ASE notes that a copy of the encryption key
identified for this user is ready for login password association. Using the master key or the system
encryption password to decrypt the information in the key copy, SAP ASE validates the user information
associated with the key copy against the user’s login credentials, and encrypts the key copy with a KEK
derived from the user’s login password, which has been supplied to the session.

When adding a key copy with alter encryption key key for login_association, the master key or the
system encryption password must be available for encryption of the key copy. The system encryption
password must still be available for SAP ASE to decrypt the key copy when the user logs in. After SAP ASE has
reencrypted the key copy with the user’s login password, the system encryption password is no longer
required.

 Note
You must use the default SAP ASE authentication method with syslogins to access key copies using a
login password. User authentication through external services such as LDAP or Kerberos results in an error
accessing the key if the user’s key copies were added for the login association parameter.

The following example encrypts a user’s copy of the encryption key, key1, with the user’s login password:

1. Key custodian “razi” creates an encryption key:

create encryption key key1 for AES with passwd 'MotherofSecrets'

2. “razi” creates a copy of key1 for user “bill”, initially encrypted with the master key or the system
encryption password, but eventually to be encrypted by “bill”’s login password:

alter encryption key key1 with passwd 'MotherofSecrets'
 add encryption
 for user 'bill' for login_association

3. SAP ASE uses the master key or the system encryption password to encrypt a combination of the key and
information identifying the key copy for “bill”, and stores the result in sysencryptkeys.

4. “bill” logs in to SAP ASE and processes data, requiring the use of key1. For example, if emp.ssn is
encrypted by key1:

select * from emp

SAP ASE recognizes that it must encrypt “bill”’s copy of key1 with his login password. SAP ASE uses the
master key or the system encryption password to decrypt the key value data saved in step 4. It validates
the information against the current login credentials, then encrypts key1's key value with a KEK generated
from “bill”’s login password.

92 P U B L I C
Database Encryption

Key Protection Using User-Specified Passwords

5. During future logins when “bill” processes columns encrypted by key1, SAP ASE accesses key1 directly
by decrypting it with “bill”’s login password, which is available to SAP ASE through “bill”’s internal session
context.
Users who are aliased to “bill” cannot access the data encrypted by key1 because their own login
passwords cannot decrypt key1.

6. When “bill” loses authority to process confidential data, the key custodian drops “bill”’s access to the key:

alter encryption key key1 drop encryption for user 'bill'

A user can encrypt a key copy directly with a login password with alter encryption key using the with
passwd login_passwd clause. However, the disadvantages of using this method over the login association
are:

● The key custodian must communicate the key copy’s first assigned password to the user.
● The user must issue alter encryption key to reencrypt the key copy with a login password.

For example:

● “razi” adds a key copy for user “bill” encrypted by an explicit password:

alter encryption key key1 with passwd 'MotherofSecrets'
add encryption with passwd 'just4bill' for user bill

● “razi” shares the key copy's password with “bill”.
● “bill” decides to encrypt his key copy with his login password for his own convenience:

alter encryption key key1 with passwd "just4bill" modify encryption with
passwd login_passwd

● Now, when “bill” processes encrypted columns, SAP ASE accesses “bill”’s key copy through his login
password.

9.6 Login Password Change and Key Copies

If you hold a key copy encrypted by a login password on one or more keys, you need not modify the key copies
after you change your login password. alter login decrypts your key copies with your old login password
and reencrypts them using the new login password.

If the SSO uses alter login to change your password, alter login drops your key copies. This prevents
an administrator from gaining access to a key through a known password. After a mandatory password change
of this kind, the key custodian must use alter encryption key to add a key copy for login_association
for the user whose password is changed. alter login ignores offline databases and, for keys stored in offline
databases, the key custodian follows the steps for recovering a lost key copy password when the database
comes back online.

The key custodian may also need to perform these steps when a user’s password is changed after the server is
started using the -p flag. If the SSO, who uses the -p flag also has access to keys through key copies encrypted
with his or her login password, then the key custodian must drop and re-create the SSO’s key copies.

Database Encryption
Key Protection Using User-Specified Passwords P U B L I C 93

Related Information

Loss of Login Password [page 106]

9.7 Dropping a Key Copy

When a user changes jobs or leaves the company, the key custodian should drop the user’s key copy.

Context

The syntax is:

alter encryption key <keyname> drop encryption for user <user_name>

For example, if user “bill” leaves the company, the key owner can prevent “bill”’s access to key1 by dropping
his key copy:

alter encryption key key1 drop encryption for user bill

SAP ASE does not require a password for this command because no key decryption is required.

drop encryption key drops the base key and all its copies.

94 P U B L I C
Database Encryption

Key Protection Using User-Specified Passwords

10 Key Protection Using External Keystore

SAP ASE can use the Hardware Security Module (HSM) external keystore to encrypt keys. HSMs are physical
devices that provide secure storage for encryption keys, called HSM keys. SAP ASE can use a single HSM key
per SAP ASE instance to encrypt or decrypt master encryption keys present in any database.

To use an HSM key:

1. Supply the necessary credentials to configure SAP ASE so that it can connect to the HSM device.
2. Create a key in the device or use a key that is already present in the device to encrypt the master key.

You cannot downgrade SAP ASE to prior versions if any master key in any SAP ASE server is encrypted with the
HSM key.

 Note
Encrypting keys using an external keystore is supported on all SAP ASE platforms except IBM AIX.

 Note
SAP ASE still supports encrypting master keys with user passwords. See Key Protection Using User-
Specified Passwords [page 84].

10.1 Configuring the Usage of External Encryption Key

Enable SAP ASE to store a key externally so that you can encrypt the SAP ASE master key with an HSM key.

Procedure

Enable SAP ASE to store a key externally by specifying the external keystore configuration parameter:

sp_configure 'external keystore', 0, 'hsm'

○ external keystore
Specifies the external key storage mechanism to be used to acquire the encryption key for encrypting the
SAP ASE master key.
Permissions for setting the external keystore configuration parameter differ based on your granular
permissions settings:
○ When granular permission is disabled, you must have the sso_role permissions.
○ When granular permission is enabled, you must have the manage security configuration

permissions.

Database Encryption
Key Protection Using External Keystore P U B L I C 95

 Note
SAP ASE currently supports only the HSM external key storage mechanism.

○ hsm
Specifies using the external key from an HSM device for encrypting SAP ASE master key.

 Note
The hsm option is only supported with threaded kernel mode.

10.2 Specifying HSM Credentials

The HSM device uses the PKCS#11 library to define a platform-independent Cryptoki API to cryptographic
tokens. Cryptoki recognizes the security officer (CKU_SO) and normal user (CKU_USER) token user types. SAP
ASE requires authentication by the normal user to create Cryptoki objects in the HSM device and perform
encryption and decryption.

Procedure

Use the sp_encryption system procedure to specify the normal user credentials to SAP ASE:

sp_encryption 'hsm_credential' [, ' lib=<pkcs11 library name>; pin=<normal user pin>; slot=<slot number>; ']
○ hsm_credential

Specify the HSM credentials used to access the HSM key.
Permissions for setting the HSM credentials differ based on your granular permission settings:
○ When granular permission setting is disabled, you must have the sso_role.
○ When granular permission setting is enabled, you must have the manage security

configuration permissions.
Execute sp_encryption with this parameter only to display the HSM credentials used to access the HSM
key.

○ <pkcs11 library name>
Specify the name of the PKCS#11 library to use. The library should be located in the $SYBASE/
ASE-16_0/lib folder.

○ <normal user pin>
Specify the normal user pin on the HSM device.

○ <slot number>
Specify the slot number that contains the token device to be used.

96 P U B L I C
Database Encryption

Key Protection Using External Keystore

This example specifies the HSM credentials:

sp_encryption 'hsm_credential', 'lib= libCryptoki2_64.so; pin=my8SeCret; slot=1'

This example displays the HSM credentials and its returned result:

sp_encryption 'hsm_credential'
hsm_credential

Msg 17408, Level 16, State 1:
Procedure 'sp_encryption', Line 3366:
The current HSM credential setting is: 'lib=libCryptoki2_64.so;slot=1'. (return status = 0)

10.3 Creating HSM Keys

Use the create encryption key command and the credentials set by sp_encryption to create the HSM
key and to make its entry to SAP ASE.

Context

SAP ASE creates the HSM key in the master database and uses the HSM key to encrypt only the master key of
any database. SAP ASE supports only one HSM key per instance. SAP ASE creates HSM keys using two
methods:

● Each SAP ASE instance creates a unique key with a key name (referenced in SAP ASE) and a key ID (in the
HSM device). The uniqueness of key ID is ensured by using a universally unique identifier (UUID).

● Various SAP ASE instances use the same HSM key that can be created by any SAP ASE instance. When an
SAP ASE instance creates an HSM key that already exists, the UUID is supplied as an argument when the
key is created, SAP ASE verifies that the key with the corresponding UUID exists on the HSM device and
gives an error if the corresponding UUID does not exist.

SAP ASE records the key name and the corresponding UUID of key in catalogs.

Procedure

Execute create encryption key to create the HSM key:

create encryption key [<owner>.]<keyname> [for AES]
 on external keystore
 [with
 {[keylength 256]
 [init_vector random] [uuid <key_uuid_on_device>]}]

Database Encryption
Key Protection Using External Keystore P U B L I C 97

○ on external keystore
Create the raw key on the external keystore (SAP ASE supports only the HSM device as external keystore).
You can create only one key as the HSM key in an SAP ASE instance. This clause does not apply to master
keys, database encryption keys, or service keys.
Permissions for creating HSM keys differ based on your granular permission settings:
○ When granular permission setting is disabled, you must have the sso_role or keycustodian_role

permissions.
○ When granular permission setting is enabled, you must have the manage master key permissions.

○ <keyname>
Specify the name of the HSM key to be referenced in SAP ASE.

○ <key_uuid_on_device>
Specify the ID of the HSM key to be referenced in the HSM device. SAP ASE reports an error if the key with
UUID does not exist in the HSM device. When this clause is not specified, SAP ASE generates a new UUID
for the key. This clause is useful when the same key present on the HSM device needs to be used on
another ASE installation. The format of UUID can be:
○ A 32-byte UUID string without hyphens, such as d078fff951944f8ea524-d2dcc60a8e52.
○ A 36-byte UUID string with hyphens, such as d078fff9-5194-4f8e-a524-d2dcc60a8e52.

○ for AES
(Optional) Specify that the HSM key uses only the Advanced Encryption Standard (AES) encryption
algorithm to encrypt data. SAP ASE uses AES even if you do not specify for AES because it is the only
encryption algorithm SAP ASE supports. If you specify any other algorithm, SAP ASE ignores it and gives a
warning.

○ keylength 256
(Optional) Specify the length of HSM key as 256 bits only. SAP ASE uses 256 bits as the key length even if
you do not specify keylength 256 because it is the only key length SAP ASE supports. If you specify any
other key length, SAP ASE ignores it and gives a warning.

○ init_vector random
(Optional) Specify using a random initialization vector during encryption. SAP ASE uses a random
initialization vector even if you do not specify init_vector random because it is the only initialization
vector setting SAP ASE supports. If you specify init_vector null, SAP ASE ignores it and issues a
warning.

This example creates an HSM key with the UUID specified to be used in the HSM device:

create encryption key hsm_key on external keystore
 with
 keylength 256
 init_vector random
 uuid '89586e56c69d2b45fe89d2c68e520adc'

This example creates a brand new HSM key without specifying the UUID:

create encryption key hsm_key on external keystore

98 P U B L I C
Database Encryption

Key Protection Using External Keystore

10.4 Dropping HSM Keys

Drop the HSM key from SAP ASE and the HSM device using drop encryption key, with the credentials set
by sp_encryption.

Prerequisites

The HSM key present on the HSM device cannot be used or referenced by any other SAP ASE instances.

Procedure

Drop the HSM key using the drop encryption key command:

drop encryption key [<owner>.]<keyname> [cascade]

○ keyname
Specify the name of the HSM key to be referenced in SAP ASE. You cannot drop the key from SAP ASE if
the key is used for encrypting any master key in any database.
Permissions for dropping HSM keys differ based on your granular permissions settings:
○ When granular permission setting is disabled, you must have the sso_role or keycustodian_role

permissions.
○ When granular permission setting is enabled, you must have the manage master key permissions.

○ cascade
Drop the key from the HSM device. If not specified, only the entry in SAP ASE is dropped. If the HSM key is
used by more than one SAP ASE instance, use cascade on the last SAP ASE instance when dropping the
HSM key.

 Note
To drop the HSM key on an HSM device that is not used by any SAP ASE database, either create the
HSM key with a UUID in the device and then drop the key with the cascade clause, or use the HSM
device vendor-provided tool to drop the key.

This example uses the cascade clause to drop the HSM key from both SAP ASE and the HSM device:

drop encryption key hsm_key cascade

This example drops the HSM key from just SAP ASE. The key present on the HSM device is not dropped
because the cascade clause is omitted:

drop encryption key hsm_key

Database Encryption
Key Protection Using External Keystore P U B L I C 99

10.5 Creating Master Key Encrypted with External Key

Use create encryption key to encrypt the master key with the external (HSM) key.

Context

You can encrypt the master key of any database with an external key based on the external keystore
configuration. If this configuration is set to hsm, the master key is encrypted with the HSM key previously
created in the master database. See Configuring the Usage of External Encryption Key [page 95] for more
details.

Procedure

Use the create encryption key command with the master parameter to create a master key encrypted
with the external key:

create encryption key master [for AES] with {passwd <char_literal> | external key}
○ external key

Encrypt the master key with an external key. If the indicated external key does not exist, then SAP ASE
gives an error.

This example creates the master key in the current database, which is encrypted with the key present on an
external keystore:

create encryption key master with external key

10.6 Altering Master Key to Encrypt with External Key

The master key can be encrypted with a user password or an external key. Alter the encryption key of the
master key from the user password to the external key and vice versa using the alter encryption key
command.

Context

A master key encrypted with an external key cannot have key copies for users, recoveries, or automatic start-
ups. You can regenerate and change the owership of the master key encrypted with the external key.

100 P U B L I C
Database Encryption

Key Protection Using External Keystore

Procedure

Alter the encryption method of the master key using the alter encryption key command, where the
external key parameter alters the encryption of the existing master key, from using a user password to
using an external key:

alter encryption key master with {passwd <char_string> | external key} {modify encryption {with {passwd <char_string> | external key}} | regenerate key | modify owner <user_name> }

In this example, the encryption of the master key switches from using the user password to the external key:

alter encryption key master with passwd 'its8Secret' modify encryption with external key

In this example, the encryption of the master key changes from using the external key to the user password:

alter encryption key master with external key modify encryption with passwd 'new8Secret'

This example regenerates the master key to be encrypted with the external key:

alter encryption key master with external key
 regenerate key

10.7 Backing Up and Restoring the Master Encryption Key

You can encrypt master and dual master encryption keys with a user password and export them into a file, then
import them at the target SAP ASE from the file by specifying the same user password. Importing the master
key creates a master key that is encrypted with the same user password. You should alter the master key on
the target system to be re-encrypted by the external key or by a new user password.

Procedure

Export or import an encrypted (dual) master key using transfer encryption key:

transfer encryption key [dual] master with password '<password>' {to | from} <destination_file> [with override]

○ password
Specify the password used to encrypt and decrypt the master key when importing and exporting.

Database Encryption
Key Protection Using External Keystore P U B L I C 101

○ to | from
Specify whether you are exporting the master key to the destination file or importing it from the
destination file.

○ <destination_file>
Specify the file or path name to export or import the master key. The file or path name should be
accessible to the SAP ASE server.

○ with override
Only applicable when importing; specify it if a key already exists. SAP ASE reports an error if a key exists,
and you don't specify this clause.
If there are keys that are encrypted with a key being imported, SAP ASE performs a validation to ensure the
imported key can decrypt the existing keys encrypted with it.
Any key copies of the master or dual master key being imported are dropped.

This example migrates a database containing a master key encrypted with an external key from source to
target SAP ASE and encrypts the master key with the external key in the target SAP ASE.

At the source SAP ASE:

use master dump database src_db
 to '/path/to/dumpfile'
use src_db
transfer encryption key master
 with password 'mysecret8'
 to '/path/to/file'

At the target SAP ASE:

use master create encryption key hsm_key
 on external keystore
load database target_db
 from '/path/to/dumpfile'
online database target_db
use target_db
transfer encryption key master
 with password 'mysecret8'
 from '/path/to/file'
 with override
alter encryption key master
 with password 'mysecret8'
 modify encryption with external key

10.8 Recovering a Fully Encrypted Database
During server start-up, you can decrypt the master key with the external (HSM) key by using the credential
stored in SAP ASE. Once the master key is available, the normal process of fully encrypted database recovery
takes place automatically.

If fully encrypted databases are not recovered during server start-up due to unavailability of HSM credentials,
connect to the server after you start SAP ASE, set the HSM credentials, and manually recover the fully
encrypted database:

online database <encrypted_dbname>

102 P U B L I C
Database Encryption

Key Protection Using External Keystore

10.9 Monitoring Information About HSM Keys

Use the sp_encryption command with the help or helpkey parameter to monitor information about the
HSM keys.

Monitor Information for All Keys

This example displays information for all the encryption keys in an SAP ASE instance without specifying the
<keyname> parameter:

sp_encryption helpkey

The result is:

Key Name Key Owner Key Length Key Algorithm Key Type Pad
Initialization Vector Protected By Key Recovery # of Key Copies -------- --------- ---------- ------------- ------------------ ---
--------------------- ------------- ------------ ----------------
hsmkey dbo 256 AES symmetric hsm key 0
1 hsm 0 0
key5 dbo 128 AES symmetric key 0
1 user password 0 0

(2 rows affected) (return status = 0)

Monitor Information for the HSM Key

This example monitors information for only the HSM key named hsmkey by specifying the <keyname>
parameter:

sp_encryption helpkey, hsmkey

The result is:

Key Name Key Owner Key Length Key Algorithm Key Type Pad Initialization
Vector Protected By Key Recovery # of Key Copies UUID -------- --------- ---------- ------------- ----------------- ---
--------------------- ------------ ------------ ---------------

hsmkey dbo 256 AES symmetric hsm key 0
1 hsm 0 0
493f29551b884c4a9083dc0527d7cd53
(1 row affected) (return status = 0)

Use this to check the UUID information when you create HSM keys using the same UUID.

Database Encryption
Key Protection Using External Keystore P U B L I C 103

Monitor Information When Master Key is Encrypted With HSM Key

This example monitors information for the master key as well when it is encrypted by the HSM key:

sp_encryption helpkey

The result is:

Key Name Key Owner Key Length Key Algorithm Key Type Pad
Initialization Vector Protected By Key Recovery # of Key Copies ---------------- --------- ---------- ------------- -------------------- ---
--------------------- ------------ ------------ ---------------
hsmkey dbo 256 AES symmetric hsm key 0
1 hsm 0 0
sybencrmasterkey dbo 256 AES symmetric master key 0
0 hsm key 0 1
key5 dbo 128 AES symmetric key 0
1 master key 0 0
(3 rows affected) (return status = 0)

104 P U B L I C
Database Encryption

Key Protection Using External Keystore

11 Key Recovery from Lost Passwords

Key custodians can recover keys and lost passwords, and manage the ownership of encryption keys.

Related Information

Creating Master Key Copies [page 23]

11.1 Loss of Password on Key Copy

If a user loses a password for the encryption key, the key custodian must drop the user’s copy of the encryption
key and issue to the user another copy of the encryption key with a new password.

In this example, the key custodian assigned a copy of key1 to “bill”, and “bill” changed his password on key1 to
a password known only to him. After losing his password, “bill” requests a new key copy from the key
custodian.

1. The key custodian deletes Bill’s copy of the key:

alter encryption key key1 drop encryption for user bill

2. The key custodian makes a new copy of key1 for user “bill” and gives “bill” the password:

alter encryption key key1 with passwd 'MotherofSecrets'
 add encryption with passwd 'over2bill' for user bill

3. “bill” automatically has permission to alter his own copy of key1:

alter encryption key key1 with passwd 'over2bill'
 modify encryption with passwd 'billsnupasswd'

Database Encryption
Key Recovery from Lost Passwords P U B L I C 105

11.2 Loss of Login Password

If a user who has key copies encrypted by his or her login password loses that password, the key custodian can
recover access for the user.

For example, if the user “bill”, who has key copies encrypted by his login password, loses his login password,
you can recover his access to encryption keys with these steps:

1. The SSO uses alter login to issue “bill” a new login password. SAP ASE drops any key copies assigned
to “bill” for login association or key copies already encrypted by “bill”’s login password.

2. The key custodian follows the regular procedure for setting up key encryption by login association. He
verifies that the master key or the system encryption password was set, and creates a key copy for “bill":

alter encryption key k1 with passwd 'masterofsecrets'
 add encryption for bill for login_association

This step assumes the key custodian still knows the base key’s password. If the key’s encryption password
is unknown, the key custodian must first follow the key recovery procedure.

3. The next time “bill” accesses data encrypted by k1, SAP ASE reencrypts the key copy for "bill" using the
new login password for “bill”. For example, if emp_salary is encrypted by key k1, the following statement
automatically reencrypts the key copy for “bill” with his login password:

select emp_salary from emp where name like 'Prisicilla%'

Related Information

Login Password Change and Key Copies [page 93]

11.3 Loss of Password on Base Key

Key custodians can use key recovery if the base key password is lost. Key recovery is vital because, without the
password, the key custodian cannot change the key’s password or add key copies.

If all users share access to data through the base key and a user forgets the password, he or she can get the
password from another user or the key custodian. If no one remembers the password, all access to the data is
lost. Because of this, SAP ASE recommends that you back up keys by creating a copy of the base key that you
can use for recovery. This copy is called the key recovery copy.

The key custodian should:

● Appoint one user as the key recoverer. The key recoverer's responsibility is to remember the password to
the key recovery copy.

● Make a copy of the base key for the key recoverer. Every key that requires recovery after a disaster must
have a key recovery copy.

106 P U B L I C
Database Encryption

Key Recovery from Lost Passwords

11.4 Key Recovery Commands

SAP ASE does not allow access to data through the recovery key copy. A key recovery copy exists only to
provide a backup for accessing the base key.

Set up a recovery key copy using:

 alter encryption key <keyname> with passwd <base_key_passwd> add encryption with passwd <recovery_passwd> for user <key_recovery_user> for recovery

where:

● <base_key_passwd> – is the password the key custodian assigned to the base key.
● <recovery_passwd> – is the password used to protect the key recovery copy.
● <key_recovery_user> – user assigned the responsibility for remembering a password for key recovery.

After setting the key recovery copy, the key custodian shares the password with the key recovery user, who can
alter the password using:

alter encryption key <keyname> with passwd <old_recovery_passwd> modify encryption with passwd <new_recovery_passwd> for recovery

During key recovery, the key recovery user tells the key custodian the password of the key recovery copy. The
key custodian restores access to the base key using:

alter encryption key <keyname> with passwd <recovery_key_passwd> recover encryption with passwd <new_base_key_passwd>

where:

● <recovery_key_passwd> – is the password associated with the key recovery copy, shared with the key
custodian by the recovery key user. SAP ASE uses the <recovery_key_passwd> to decrypt the key
recovery copy to access the raw key.

● <new_base_key_passwd> – is the password used to encrypt the raw key. SAP ASE updates the base key
row in sysencryptkeys with the result.

This example shows how to set up the recovery key copy and use it for key recovery after losing a password:

1. The key custodian creates a new encryption key protected by a password.

create encryption key key1 for AES passwd 'loseitl8ter'

2. The key custodian adds an encryption key recovery copy for key1 for “charlie”.

alter encryption key key1 with passwd 'loseitl8ter' add encryption
 with passwd 'temppasswd'
 for user charlie for recovery

3. “charlie” assigns a different password to the recovery copy and saves this password in a locked drawer:

alter encryption key key1 with passwd 'temppasswd'
 modify encryption

Database Encryption
Key Recovery from Lost Passwords P U B L I C 107

 with passwd 'finditl8ter' for recovery

4. If the key custodian loses the password for base key, he can obtain the password from “charlie” and
recover the base key from the recovery copy using:

alter encryption key key1 with passwd 'finditl8ter'
 recover encryption with passwd 'newpasswd'

The key custodian now shares access to key1 with other users by sharing the base key’s password, or by
dropping and adding key copies where changes in personnel have occurred.

11.5 Ownership Change of Encryption Keys

The SSO can transfer key ownership to a named user. Changing ownership may occur in the normal course of
business, or as part of key recovery.

This command, when executed by the SSO, transfers key ownership to a named user:

alter encryption key [[<database>.][<owner>].]<keyname> modify owner <user_name>

where <user_name> is the name of the new key owner. This user must already be a user in the database where
the key was created.

For example, if “razi” is the key custodian, and owns the key encr_key, but is being replaced by a new key
custodian named “tinnap”, change the key ownership using:

alter encryption key encr_key modify owner tinnap

Only the SSO or the key owner can run this command. If the new owner already has a copy of the key, you see:

A copy of key encr_key already exists for user tinnap

A user who already has a regular key copy or a recovery key copy cannot become the new owner of the key.
SAP ASE does not allow a key copy to be made for a key owner.

If the previous key owner had granted any permissions on the key, the granter user ID in sysprotects system
table is changed to the user ID of the new owner of the key. The ownership change is effective immediately; the
new owner need not log in again for the change to take effect.

108 P U B L I C
Database Encryption

Key Recovery from Lost Passwords

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

● Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

● The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
● SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

● Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language
We try not to use gender-specific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

Database Encryption
Important Disclaimers and Legal Information P U B L I C 109

www.sap.com/contactsap

© 2020 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	Database Encryption
	Content
	1 Overview of Encryption
	1.1 Full Database Encryption
	1.2 Column Encryption

	2 Protect Data with Encryption Keys
	2.1 Creating the Database Encryption Key
	2.1.1 Dropping a Database Encryption Key
	2.1.2 Changing a Database Encryption Key

	2.2 Creating Column Encryption Keys
	2.2.1 Dropping Column Encryption Keys
	2.2.2 Changing the Column Encryption Key

	2.3 Key Protection
	2.3.1 Grant Access to Keys
	2.3.2 Separate Keys from Data

	3 Key Encryption
	3.1 Protect Encryption Keys with the Master Key
	3.2 Protect Encryption Keys with the System-Encryption Password
	3.3 Protect Keys with User-Specified Passwords
	3.4 Protect Encryption Keys with Dual Control

	4 Database-Level Master and Dual Master Keys
	4.1 Creating the Master and Dual Master Keys
	4.1.1 Creating Master Key Copies

	4.2 Setting Passwords for the Master and Dual Master Keys
	4.3 Altering Passwords and Key Encryption Keys for Master Key Copies
	4.4 Regenerate Master Keys
	4.5 Dropping Master Keys and Key Copies
	4.6 Recovering the Master Key and Dual Master Key
	4.7 Starting SAP ASE in Unattended Start-Up mode
	4.7.1 Configure Unattended Start-Up Mode
	4.7.2 Create the Master Key Start-Up File
	4.7.3 How SAP ASE Uses the Master Key Start-Up File

	5 Secure External Passwords and Hidden Text
	5.1 Service Keys
	5.1.1 Creating Service Keys
	5.1.2 Dropping Service Keys
	5.1.3 Modify Service Keys
	5.1.3.1 Changing the syb_extpasswdkey
	5.1.3.2 Changing the syb_syscommkey

	5.1.4 Service Keys with External Passwords
	5.1.4.1 SSL Passwords
	5.1.4.2 LDAP Passwords
	5.1.4.3 Replication Agent Passwords

	5.2 Service Keys Encrypted with the Master Key

	6 Database Encryption
	6.1 Create an Encrypted Database
	6.2 Encrypt an Existing Database
	6.2.1 Step-By-Step Tutorial to Encrypt an Existing Database

	6.3 Encryption Status and Progress
	6.4 Performance Considerations
	6.5 Suspend the Encryption Process
	6.5.1 The quiesce database Command and Fully Encrypted Databases

	6.6 Resume the Encryption Process
	6.7 Temporary Database Encryption with Random Encryption Keys
	6.8 Decrypt an Encrypted Database
	6.9 Recover Fully Encrypted Databases
	6.10 Back Up (Dump) a Fully Encrypted Database
	6.11 Back Up the Database Encryption Key
	6.12 Restore (Load) Backups of Fully Encrypted Databases
	6.13 Loading Behavior of Encrypted Databases
	6.14 Dropping a Database That is Being Encrypted
	6.15 Unmount an Encrypted Database
	6.16 Mount an Encrypted Database
	6.16.1 Migrate Database Encryption Keys
	6.16.2 Encrypted Database Mounting

	6.17 Archive Databases and Full Encryption
	6.18 Encrypted Database Audits

	7 Column Encryption
	7.1 Encrypting Columns on New Tables
	7.1.1 Specifying Encryption on select into

	7.2 Encrypting Columns in Existing Tables
	7.3 Index Creation and Constraints on Encrypted Columns
	7.4 Domain Creation and Access Rules on Encrypted Columns
	7.5 Decrypt Permission
	7.5.1 Revoking Decryption Permission

	7.6 Restrict Decrypt Permission
	7.7 Default Values Returned Instead of Decrypted Data
	7.7.1 Defining Decrypt Defaults
	7.7.2 Permissions and Decrypt Default
	7.7.3 Columns with Decrypt Default Values
	7.7.4 Decrypt Default Columns and Query Qualifications
	7.7.5 decrypt default and Implicit Grants
	7.7.6 decrypt default and insert, update, and delete Statements
	7.7.7 Removing Decrypt Defaults

	7.8 Length of Encrypted Columns
	7.9 Encrypted Column Audits
	7.9.1 Event Names and Numbers
	7.9.2 Auditing Actions of the Key Custodian

	7.10 Performance Considerations
	7.10.1 Indexes on Encrypted Columns
	7.10.2 Sort Orders and Encrypted Columns
	7.10.3 Joins on Encrypted Columns
	7.10.4 Search Arguments and Encrypted Columns
	7.10.5 Movement of Encrypted Data as Cipher Text

	7.11 Access Encrypted Data
	7.11.1 Encrypted Columns Process
	7.11.2 Permissions for Decryption
	7.11.3 Drop Encryption

	8 Role of the Key Custodian
	8.1 Users, Roles, and Data Access

	9 Key Protection Using User-Specified Passwords
	9.1 Change a Key’s Protection Method
	9.2 Create Key Copies
	9.3 Change Passwords on Key Copies
	9.4 Access Encrypted Data with a User Password
	9.5 Application Transparency Using Login Passwords on Key Copies
	9.6 Login Password Change and Key Copies
	9.7 Dropping a Key Copy

	10 Key Protection Using External Keystore
	10.1 Configuring the Usage of External Encryption Key
	10.2 Specifying HSM Credentials
	10.3 Creating HSM Keys
	10.4 Dropping HSM Keys
	10.5 Creating Master Key Encrypted with External Key
	10.6 Altering Master Key to Encrypt with External Key
	10.7 Backing Up and Restoring the Master Encryption Key
	10.8 Recovering a Fully Encrypted Database
	10.9 Monitoring Information About HSM Keys

	11 Key Recovery from Lost Passwords
	11.1 Loss of Password on Key Copy
	11.2 Loss of Login Password
	11.3 Loss of Password on Base Key
	11.4 Key Recovery Commands
	11.5 Ownership Change of Encryption Keys

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

